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PREFACE

This is one of a series of technical studies produced under the auspices of the National
Household Survey Capability Programme of the United Nations Statistical Division
(UNSTAT) of the Department for Economic and Social Information and Policy
Analysis. The series is designed to assist countries, particularly developing countries,
in planning and implementing household surveys. A number of studies have been
published 10 provide reviews of issues and procedures in specific areas of household
survey methodology and in selected subject areas.

Irrespective of their particular source, all statistical data are subject to errors of
various types. As a component of the total error, sampling error is a measure of the
uncertainty in the results arising from the fact that inferences about the whole
population are drawn from observations confined to a sample. Information on
sampling errors is needed [or the correct interpretation of sample survey results and
for improving survey design.

This study aims to provide a basic understanding of the practical procedures for
computing sampling errors and guidelines on how to analyse and utilise this
information. Topics are discussed with numerous illustrations to ensure that the study
is of maximum benefit to sampling practitioners.

The study was prepared by Mr. Vijay Verma who assisted the United Nations as a
consultant. 1t was edited by Mr. Edmundo Berumen-Torres. Among the reviewers,
special appreciation is extended to Professor Leslie Kish and Mr. Christopher Scott
for valuable suggestions leading to improvement of this work. The study was prepared
with financial support from the United Nations Population Fund.
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INTRODUCTION

1.1 THE CONTEXT

It is widely recognised as good practice [or survey reports to include detailed information on the sampling variability
of survey estimates. Information on sampling errors is needed both for the correct interpretlation of survey results
and for evaluating and improving survey design. Yet no such information is included in many reports based on
sample surveys. The primary reason for this state of affairs is a lack of appreciation among many producers as well
as users of statistics of the significance of information on sampling errors.

The present study is one of a series of Technical Studies produced under the auspices of the National Household
Survey Capabilily Programme with the objective of improving the quality of household survey work. It aims to provide
a basic understanding of the practical procedures of computing sampling errors, and guidelines on how to analyse and
utilise this information in the context of large-scale household surveys. Various topics are discussed in sufficient
technical detail with numerous illustrations, and in a reasonably self-contained manner, to ensure that the study is
of maximum benefil to sampling practitioners in developing countries.

While we have tried to make this study as self-contained and technically comprehensive as possible, it has been
assumed that the reader is familiar with (he basic concepts of sampling theory and survey practice. Of course, concepts
and procedures which directly pertain to the discussion al hand are clearly defined and explained to the extent
possible, and a brief introduction to some basic ideas is given in this chapter. In the main, however, reference must
be made to the much more comprehensive explanations available in many standard texts on sampling methods and
in the literature generally.

To compute sampling errors for diverse survey estimates, it is necessary to have computer sofiware specifically
designed for the purpose. In Chapter 5 a brief review is given of some of the programs available at the time the
present report was prepared.
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1.2 OUTLINE OF THE CONTENT

Part I of this study provides a technical description of the various practical procedures [or computing sampling errors
in large-scale surveys with complex designs. Chapter 2 describes, with numerical examples, the most commonly used
method which is based on comparisons between primary selections within each stratum of a multi-stage stratified
design. Chapter 3 describes various methods based on the idea of sample replications, which are more readily
extended to complex statistics. Diverse practical issues in the implementation of these variance estimation procedures
arc addressed in Chapter 4, including a bricl review of the available sofiware for the purpose.

Part 11 considers the analysis and use of the inlormation on sampling errors. Chapter 5 is concerned with
decomposition of the overall sampling error into components which are valuable in analysis and better utilization of
the information. This includes as its basis the decomposition into (i) the part of the overall sampling error which
would be obtained in a SRS, and (ii) the design elfect which measures the eflcct on sampling error of various
complexities of the sample design. Each part can be further decomposed, for instance to isolate the effect ol sample
sizec and weighting. Chapter 6 considers, mor¢ comprehensively and with many illustrations, the ‘modelling’ of
sampling errors to develop measures which are ‘portable’ for use from one statistic and situation 10 another. On this
basis, sampling crrors for diverse subclasses and differences belween classes can be related to those for the (ota]
sample. Chapter 7 provides, again with many illustrations, issues relating to the presentation of sampling errors to
suit the requirements ol different categories of users.

1.3 SOME BASIC CONCEPTS AND PROCEDURES

This section briclly reviews some basic aspects of survey structure and design to which repeated relercnee will be made
in the course of discussion on sampling errors in the following chapters.

Multi-purpose Surveys; Complex Dcsign and Estimation

The requirements and procedures for computing sampling errors have (o be determined on the basis of the type of
application required.

A common feature ol national household surveys is their multipurpose nature. A typical survey is multipurpose in
several respects. It may involve many types of substantive variables; for any variable, different types of statistics such
as estimates of aggregates or tolals, proportions or percentages, means, rates and ratios, differences and other
functions of ratios may be involved. Statistics may be required not only at the national level, but also separaltely for
various geographical domains such as urban and rural areas and regions, and [or numerous other subclasses or groups
in the population. The need for comparisons among groups in the population can vastly increase the number of
separate statistics involved; in analytical surveys other, more complex measures of relationship such as regression and
correlation coefficients may also be encountered. Another dimension of variation is the different types of units of
analysis in the survey, such as individual persons, households, or communities. Some houschold surveys also involve
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analysis in terms of non-household units such as agricultural holdings and household enterprises, or various subunits
within households such as earning, spending and family units.

A ypical national household survey may involve a sample of several thousand households selected from area units
in a number of sitages with stratification at each stage. Special selection procedures such as systematic sampling and
selection with probability proportional to size (PPS) may be involved. The sampling rates may differ between different
domains such as urban and rural areas or regions of the country. Multi-phase sampling and overlaps or rotation
between samples are other examples of complexity. The sample data may be weighted. More complex composite,
synthetic, seasonally adjusted estimates, ctc, may also be involved, though the use of complex estimation procedurcs
tends to be less common in developing countries, at least in part due (o the lack of auxiliary information required
for their application.

All these aspects of complexity and diversity tend o be even morc pronounced in the case of programmes of

household surveys, where individual surveys may have different objectives and content, different designs and structures,
and diverse operational and substantive linkages.

Multi-stage Sampling

In household surveys in developing countries (and in many developed countrics as well), samples of households and
persons are usually selected in a numbcer of sampling stages. For instance, the whole couniry may be divided into arca
units such as localitics or census enumeration arcas (EAs), and a sample of thesc areas selecled at the first stage. The
type of units selected at the [irst stage arc called primary sampling units (PSUs). For the first stage of selection, a
frame of PSUs is needed which lists the units covering the c¢ntire country exhaustively and without overlaps, and which
also provides information for the selection of units cfficiently. Such a frame is called the primary sampling frame
(PSF). The next (second) stage may consist ol dividing each of the PSUs selected at the first stage into smaller areas
such as blocks, and selecting one or more of these second stage units (SSUs) from euch selccted PSU. This process
may continue till a sample of sufficiently small ultimale area units (UAUS) is obtained. Finally, in cach selected UAU,
individual houscholds may be listed-and a sample selected with houscholds as the ultimate sumpling units (USUs).
In the survey, information may be collected and analyzed for the USUs themselves; or for other types of units
(‘clements’) associated with the selected USUs, such as individual persons within sample households.

In a multi-stage sample, the probability of selection of an ultimate unit is the product of probabilities at the various
stages of sclection. It is possiblc (and common) (0 have varying probabilities at different stages, but balanced such
that the overall probability of all ultimate units is uniform. A common procedurc is (o select the PSUs (and other
higher stage units) with probabilitics proportional to some measure of their size (PPS), and 10 obtain an cqual
probability sample of elemenls (‘epsem’) by sclecting the USUs with probabilities which compensate for differences
al the preccding stages.

Stratification
Stratification means dividing the units in the population into groups and then sclecting a sample independently within

each group. This permits separate control over the design and selection of the sample within each stratum, such as
urban-rural areas or regions of a country. This means that differcnt parts of the population can be sampled differently,
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using different sampling rates and designs as necessary. The separation may also be retained at the stage of sample
implementation and estimation and analysis, bul this is nol essential to the idea of stralification. It is common for
instance to pool the results from differcnt strata to produce estimates for the whole population, or for major parts
or ‘domains’ of the population each of which is composed of a number of strata. However, it is important o note
in the present context that in estimating variances, il is necessary to take fully into account the stratification as it
affects the magnitude of the sampling crror.

Probability Sampling; Measurablc Samples

It is necessary, at least in the context of ‘official’ statistics, that surveys are bascd on probability and measurable
samples. A probability sample means that cvcry element in the population is given a known and non-zero chance of
being selected into the sample. To oblain a probability sample, ccrtain proper procedurcs must be followed at the
selection and implementation stages. The sample has Lo be sclected from a frame, representing all elements in the
population, by a suitable randomisation process which gives cach unit the specified probability of sclection; in
addition, in estimating population valucs [rom the sample, the data from cach unit in the samplc should be weighted
in accordance with the unit’s chance of selection. The major strength of probability sampling is that the probability
selection mechanism permits the application of statistical theory o produce valid estimates of the population values
of interest, and furthermore, to examine the properties such as variance of these estimates.

A related bul more demanding concept is that of measurability. A sample is called measurable if [rom the variability
observed between units within the sample, usablc estimales of the sampling variance (ic. of Lthe variabilily between
diffcrent possible samples) can be obtlained. To be measurable, it is highly desirable that the sample be a probability
sample; it should also meet certain other requirements to cnsure that the sampling variability can be estimated [rom
the observed variability beiween units in the onc sample that is available.

Simplc Random Sampling

Though usually of limited relevance in the context of household surveys in developing countries, a siniple random
samplc (SRS) provides the point of refcrence against which the statistical efficiency, as well as more generally the
cost and other aspects of the qualily ol the actual complex designs used can be evaluated. We will make constant
rcference (0 such comparison in the form of the ‘design elfect’. A SRS is oblained by a scries of random selections
applicd directly to the population clements, which ensures that the chance of selection is the same not only for the
clements individually, but also in all combinations of any given size.

Syslematic Sampling

A common method of sample selection is to select Lhe units systematically from a list ordered in some way. The basic
idca is as follows. Suppose that an equal probability sample of n units (listings) is required from a population of N.
From the list of units, preferably arranged in somce useful way, one unit is selected from every [=N/n units in the list.
A random number r between 1 and I identifics a scquence number of the first unit selected. Then starting with T,
every Ith unit may be selected, ic the sequence numbers selected being r, r+1, r+2I,.....,, r+(n-1)I. To the extent that
tlie units in the original list appear in a random order, the resulting sample is equivalent to a random sample of the
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units concerned. However, existing lists are practically never randomly ordered; in any case the objective of systematic
sampling is 10 make use of the order available (o achieve a belter spread of the sample according to some meaningful
criterion, such as geographical location of thc units. In this manner, sysiematic sampling provides implicit
stratilication; it can bc regarded as stratification of the population into zoncs of size I, and the selection of onc unit
per zone or ‘implicit stratum’. The widespread usc of systematic sampling is also due 1o the great convenience of the

method in many situations.

1.4 ESTIMATION

Some remarks on the basic estimation procedures used in surveys will be useful as a background 1o the discussion
on variance estimation.

Eslimaling Proportions, Mcans or Other Ralios from a Multi-stage Sample

The most common type ol cstimator cncountered in surveys lakes the form of a ratio of two sample aggregates, say
y and x:

y = E'}', = E:ijij'yll
X = E‘x' E‘_E}_wij_xij (1.1

= y/x

Both the numerator (y) and denominator (x) may be substantive variables - as for example in the estimation of
income per capita from a houschold survey, where y is the total incomc and x the total number of persons estimated
from the survey. For ultimate unit j (a houschold) in PSU i, y, refers to its income and x, to its size (=number of
persons, in this cxample). Quantily w, is the weight associated with the unit. Sophisticated methods may be used to
compute the weights to be applicd, but a1 the most basic and important Icvel, the weights - called the design weights -
are inversely proportional to the units’ probabilities of selection into the sample. With the same probability given
(o all units, the design weights are also uniform and the sample is termed self-weighting. '

Ordinary means, percentages and proportions are just special cases of the ratio estimator. In a mean, the denominator
is a count variable, that is, x, is identically equal to 1 for all elements in the sample. This gives

EE U‘yv ) (1_2)
TITv

y =
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For a proportion (or percentage) the additional condition is that y; is a dichotomy equal to 1 or 0 depending on
whether or not unit j possesses the characteristic whose proportion is being estimated.

The survey may also involve more complex statistics such as differences, weighted sums, ratios or other functions of
ratios. These can be estimated in an analogous way.

Estimating Totals

The simple unbiased estimator (equation 1.3 below) is usually not satisfactory in practice for estimating population
aggregates. This is especially the case for surveys with a multi-stage design and small sample size. This is because with
multi-stage sampling, the resulting sample size varies at random, and therefore aggregatcs directly estimated from the
survey can have a large sampling error. The problem is cven more scrious when cstimates are required for population
subclasses the selection of which is not explicitly controlled in the multi-stage design.

" An equally important problem ariscs from the fact that estimatcs of aggregates are directly biased in proportion 1o
the magnitude of the coverage and relatcd errors. By contrast, this elfect on estimates of ratios can be much less
marked.

The appropriate procedure for estimating population aggregales is gencrally as follows. In place of a simple inflation
of the form

¥ =2x (14)
X .

where y and x are estimated totals from thc samplc; y being the variable of interest, and x an auxiliary variable for
which a more reliable population aggregate value X is available from some external source. The value and
applicability of this procedure depends on several [actors. Firstly, the corrclation coefficient between y and x must
be positive and preferably large, say greater than 0.6 or 0.7 at least. Secondly, X should be available with higher
precision than the simple estimate x of the population aggregate which can be directly produced from the sample
itsell. Thirdly, X in the population and x in the sample should be based on essentially similar coverage and
measurement; a difference between the two would introduce a bias into the estimate. This often requires that values
of the variable x for individual units - unless they are simply a count of the cases, as in the case of an ordinary mean -
arc taken from the external source rather than directly from the measurements in the survey, though of course that
must be for the actual units included in the sample.
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The precondition for the use of this procedure of course is the availability of an appropriate external total X. In many
situations, such a tolal 1s obtained from sources such as censuses, administralive records or very large samples, which
may be considered practically frec of sampling error. In such cases, the variance of (1.4) can be obtained from that
of the ratio y/x (multiplied by X?).

For this reason, and the fact that means and proportions are merely special cases, the focus in the discussion 1o follow
is primarily on he estimation of variances of ratios (and related statistics such as differences of ratios).

Weighting of the sample dala

In producing survey estimates, weighting of the sample data may be introduced for several reasons. The primary factor
1s the weighting of samplc clements in inverse proportion to their sclection probabilities. Additional weights arc often
also introduced for other reasons, such as to take into account under-coverage, non-responsc, and other factors
resulting in departures between the sample results and the corresponding information aboul the population available
more reliably from other sources. The issues involved in the weighting of complex surveys arc themsclves complex,
and nced not concern us here. The important point is that, however determined, the weights used in producing
estimates from the survey are also relevant in estimating their variances. For this, it is essential that all information
on weights be documented and preserved, preferably as an integral part of the survey dala files.

First and second order statistics

As noled above, in a multi-stage sample the probability of selection of an ultimate unit is the prodﬁcl of probabililics
at the various stages of selection. In estimating proportions, means and other types of ralios, it is only the ultimate
sampling probabilitics and nol the delails at various stages which matter. 1n fact, apart from the weights, no other
complexitics of the sample selection appear in this ¢stimation. For this reason, statistics such as proportions, means
and ratios are called first order statistics. These are distinguished from sccond order statistics, the estimation
procedures for which must take into account the complexity of the sample design. Sampling variance is the prime
example of the latter type of statistics. The practical implication here is that to estimate sampling errors, il is essential
to have information on the structure of the sample - both on the procedures of selection and of estimation.

1.5 SAMPLING VARIANCE

The particular units which happen to be sclected into a particular sample depends on chance, the possible outcomes
being deterinined by the procedures specified in the sampling design. This means that, even if the required
information on every selccted unit is obtained entircly without error, the resutts from the sample are subject to-a
degree of uncertainty due to these chance factors affecting the selection of units. Sampling variance is a measure of
this uncertainty.

The distribution of estimates from all possiblc samples with a given design (ic selection and estimation procedure):
is called the sampling distribution ol the estimator. The average of the sampling distribution, ie of all possible sample
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estimates weighted according to their probabilities, is called the expected value. Symbolically we may express this as
follows. If p, is the probability and y, the estimate from a given sample s, the expected value of the estimator y is:

E®) = Y Py, - (L3)

where the sum is taken over all possible samples. In many designs, p, is a constant; for example in a simple random
sample (without replacement):

(N-m)!.n! (1.6)

Ps N

since the inverse of this is the total number of possible samples, each equally likely.

The variance of y is defined as:
Var) = Y p y,-EO)F (17)

For various rcasons, the cxpecled or average value from all possiblec samples may nol equal the actual population
value (Y). In the absence of measurement errors, this may arise from the particular estimation procedure, in which
case 1l is called the technical or cstimation bias:

Bias = E(y) - Y - (1.8)

The combined effect of variance and bias is the mcan square error, which is defined in lerms of Lhe squared
dilferences ol sample estimales y, from the actual population value Y:

MSE() = Y. p by, Y1’ = Var(y) + (Biasy’ (19)

In most well designed and implemenlcd samples, with appropriale estimation procedures, the estimation bias is Lrivial.

An important result of sampling theory is that, under ccrlain conditions, the sampling error (variability between
different samples) can be cstimated from the observed variabilily between units in the one sample that is available.

Inference from sample surveys arc made in terms of probabilily intervals, usually confidence intervals. These intervals
are defined on the basis of an assumed form of the sampling distribution, usually taken as a normal distribution. An
estimated confidence interval is a range of values which contains the population value of interest with a given level
of confidence (such as 68%, 95% or 99%). (Illustration 7A.(1) provides some further remarks on this important
concepl.)
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1.6 THE IMPORTANCE OF INFORMATION ON SAMPLING ERRORS

All slatistical data, irrespective of their source and method of collection, are subjecl to errors of various types. It is
essenlial that results from censuses, surveys and oLher sources are accompanied by a description of their quality and
limitations. Information on data qualily is required (i) for proper use and inlerpretation of the data, and (ii) for
evaluation and improvement of statistical design and procedures. Continued monitoring and improvement in quality
of the dala generated are parlicularly important in the case of major undertakings such as national programmes of
household surveys, because such programmes are designed 10 generate data of grecat variety and complexity, and
conslitute the only available source of informatlion on many topics. IL is only on 1he basis of detailed classification
by source and type that the variely of errors limiting data accuracy can be assessed and controlled. For a
comprehensive review of survey errors, Lhe reader may consult United Nations (1982).

While survcy data are subject to errors from diverse sources, information on sampling errors is of crucial importance
in the proper interpretation of the survey results, and in the rational design of sample surveys. Of course, sampling
error is only one componcnt of the various types of errors in survey estimates, and not always the most important
component. By the same loken, il is the lower (and more casily estimated) bound of the 1otal error. A survey will
be useless if this component alonc becomes too large for the survey results to add useful inlformation with any
measure of confidence to what is alrcady known prior to the survey. Furthermore, survey estimales arc typically
required not only for Lthe whole population bul also separately for many subgroups in the population. Gencrally the
relalive magnitude of sampling error vis a vis other types of errors increases as we move [rom estimates for the total
population 10 estimates for individual subgroups and comparison bciween subgroups. Information on the magnitude
of sampling errors is therefore essential in deciding the degree of detail with which the survey data may be
meaningfully tabulated and analyzed.

Sampling error information is also cssential for sample design and evaluation. For a given survey estimate, the
magnitudc of its sampling crror dcpends, among other factors, on sample size and on the sample design adopted, in
particular the extent to which units in the sample are clustered together and are homogeneous within clusiers. To
reduce sampling error, it is ncecssary (o increase saumple size and/or to reduce the degree of clustering by scallering
the sample over more areas and over larger distances. Al Lhe same time, these very factors would increase survey
costs, and may also increase non-sampling biascs due 10 the greater difficultics in quality control and supervision
resulling from the increased size of the operalion. A balance is therefore required to minimise the otal error within
gIven resources.

Statistical efficiency is just one of the factors involved - although one which cannot be ignored. While practical
constraints dcfine, however narrowly, the class of feasible designs, choices have to be made within those on the basis
of efficiency in terms of costs and variances. Some of Lthe obvious questions to be considered relate to sample size,
allocation, clustering and stratification. For cxample:

Was (is) the sample size appropriaie? Did the presence of large sampling errors preclude important survey
objectives being met? Or alternatively, could a smaller sample have met Lhese objectives better, perhaps by
permitting a greater control of non-sampling errors? :

Was the sample allocated appropriately between different reporting domains? Was the minimum sample
allocaled to any domain large cnough to meet the survey objectives? How did any disproportionate allocation
affect the efficiency of the overall design?

9
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Was the degree of clustering of sample units too high, or 100 low, on the basis of its effect on costs, variances
and control of non-sampling errors? How much cost and trouble were saved by introducing additional sampling
stages, and what was their contribution to the total sampling error?

In terms of their sampling error, what were the most critical variables in determining sample size and design?

Generally the practical constraints are not rigorously binding in the sense of completely determining the samplc
design; data relating 10 sampling errors and costs provide, at least in principle, the decisive evidence on important
aspects of design such as those noted above. Furthermore, even in the absence of data on costs, considerable progress
can be made by looking at sampling errors alone.

1.7 PRACTICAL METHODS FOR VARIANCE ESTIMATION

Given the complexity of the designs, and diversity and volume ol statistics encountered in national household surveys,
procedurcs for computing sampling crrors, (0 be practicable, must meet some hasic requirements:

[1]  First of all, the variance cstimation proccdure must take into account the actual, complex structure of
the design and cstimation proccdures since these aspects can greatly affect the magnitude of the
sampling crrors involved.

[2] At the same time, however, the proccdures should be general and flexible to be applicable to diverse
designs. This is particularly important in the case of national programmes of houschold surveys where
individual survcys may differ in design and proccdures.

[3]  The procedure should be convenient and economical for large scale application: for producing results
for diversc variables, type of statistics and subclasses in large, complex surveys.

[4]  Generally, any computation procedure requires some basie assumptions about the nature of the sample
design [or the procedure Lo be applicable. Prefcrably these requircments should not be 100 restrictive.
Even so, designs which have to bc adopted in practice hardly ever meet these requirements exactly. It
is desirable therefore that the method adopted is reasonably robust against departurcs of the actual
design from the ‘model’ assumed in the computational method.

[S] The method should be economical in terms of the effort and cost involved, including technical as well
as computer resources.

[6] The procedure should have desirable statistical properties, such as small variance of the variance
cstimates generated, small bias and/or mean square crror, and accuracy in the probability levels with
which the estimated confidence levels actually cover the population paramcters of interesi. These
statistical requirements, however, nced to be qualified in relation to the practical requirements of
economy, generality and (lexibility notcd above. The objective is not 10 seek theoretical perfection, but
practical methods with acceptable accuracy in relation to the uses made of the information on sampling
errors. Information on sampling errors can be useful in practice even if the degree of precision with

10



1.7 Praclical Methods for Variance Estimalion

which errors for individual statistics are estimated is not high. The same criterion of the priority of
practicality over theoretical exactness should determine the choice among different methods.

{7] Finally, a most basic consideration in the choice of a method is the availability of suitable computer
software for its application. While larger and more developed statistical organizations are able to
develop and maintain their own softwarc for meeling specific needs, organizations with fewer resources
often have Lo rely on gencral purpose software developed elsewherc. The availability and rcliable
maintenance of such software can be a much more important consideration in the choice of a particular
approach 1o variance computation than moderate differences in the cost or theoretical properties of the
methods involved.

An additional desirable, though more diflicult and not always feasible, objective concerns the decomposition of the
overall sampling error into its various components associatcd with different stages of sample selection and other
aspects of the design and estimation proccdure. Such decomposition can be valuable in sample design. However,
priorily generally has o be given to (he economical production of overall magnitudes of the sampling error for diverse
variables and subclasses, over ils analysis into componenls.

To mcet the above requirement the main approach has been to develop general mcthods applicable to most statistics
and the diversity of designs encountered in large-scale sample surveys.

Clearly, the choice of the actual procedurc has to be determined by the type of application required. In contrast to
the situation sketched above for houschold surveys in developing countries, we may also note for instance Lhat, at
least in more developed countrics with high percentage ol houscholds with telephones, smaller and simpler samplcs
are bccoming common. In a sensc, there is a shilt in complexity away from the sample structure Lo morc sophisticated
estimation procedurcs making greater use of auxiliary or external information Lo improve results of the sample survey.
This difference in cmphasis can have a bearing on the approach to sampling error computation: the procedurcs
adopted may necd to take into account more carclully, and to the extent possible quantily separately, the effect of
various sleps in the estimation procedure on precision of the resulls.

11
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COMPUTING SAMPLING ERRORS:
COMPARISON AMONG PRIMARY SELECTIONS

2.1 INTRODUCTION

The basis of practical procedures: Replicatcd Variance Estimation

The theory of ‘independent replicated variance cstimators' (Mahalanobis, 1944) provides the basis for most practical
approaches to variance estimation, though in application to complex situations, additional assumptions and
approximations are involved. The basic theory may be stated as follows. Suppose thal y; are a set of random
uncorrelated variables with a common expectation Y. Then the mean ¥ of n values Yj ;

y=X,5in 2.1)
has an expecled value equal to Y, and its variance is given by:

var(y) = s*n, where s* = E! O;-»/(n-1) - (22)

The most obvious examplc of the above is a simple random sample (SRS) of clements selected with replacement,
where y; represent valucs of a certain variable for individual elements j. The same idea can be applicd to the morc
general situation when "j" refers not o individual elements but to any set of elements uncorrelated to others in the
sample, and "y," 10 any complex statistic defined for each set j. The requirement is that the y, are uncorrelated and
have a common expectation. In practice this means that the scts should be selecied and observed independently,
following the same selection, measurement and estimation procedures.



2 Comparison Among Primary Selections

While the straightforward approach can be applied more or less as sketched above in certain situations (for example
in a sample with many units selected independently, at random), its application Lo practical designs generally requires
additional assumplions and approximations, resulting in various types of procedures. Essenlially, variance estimalion
requires partitioning a given sample to produce several comparable estimates of the same population parameler, the
variabilily among which provides a valid measure of the sampling error. Basic approaches to variance estimalion can
be distinguished in terms of the manner in which the sample partitions to be compared are created.

Drawing on this basic idea, two broad practical approaches to the computation of sampling errors may be identified:

[1]  Computation from comparisons among certain aggregates for primary selections within cach stratum of
the sample.

[2] Computation from comparisons among cstimales for replications of the sample, each of which rellects

the structure of the full sample, including its siratification.
This chapter is concerned with approach [1]. Various forms of application of the second approach will be discussed
in Chapter 3", '

Method [1] involves comparison among independent primary selections comprising the sample. The term primary
selection (PS) refers to the aggregaic of elements selected within any primary sampling unit (PSU) in the sample.
(Other tcrms such as ‘ultimate cluster’ or ‘replicate’ have also been used for the same thing.) The basic model of the
method is that the sample is divided into indcpendent partitions or strata, from each of which (wo or more
independcnt primary selections are made such that cach selection or replicale provides a valid estimate of the stratum
lotal or a similar lincar statistic. By linear stalistic is mcant a statistic which can be simply aggregated - with
appropriale weights as necessary - 10 the PSU level, then to the stratum level, and finally across strata 10 produce
the overall estimale or tolal for the survey population. Stalistics such as ratios of two totals computed at lower levels
cannot be aggrepated (0 higher levels in this way; hence they are lermed non-linear statistics.

In the usual way, Lthe mean square devialion beiween the independent estimates from the primary selections provides
a measure of variance wilhin the stratum. The siralum estimales and variances can then be aggregaled to produce
the corresponding quantities for the whole population. With independent primary selections, the delails of the sample
design within PSUs do not complicale the variance cstimation formulae, imparting great simplicity and generality Lo
this technique. Directly the method is applicable to linear statistics only; generalization 1o more complex (non-lincar)
stalistics requires linearisation approximations through which the complex statistics can be expressed as linear
functions of simple (linear) aggregates with constant coefficients. In view of the general application to ratios and other
complex statistics encountered in most surveys, the method is referred to as the linearisation method.

For good summarices of the various practical procedures for variance estimation, see Kalton (1977) and Rust (1985).

*Method [1] 1s known by various names such as ‘linearisation’, ‘Taylor series’, 'ultimate clusters’, or "primary selcction compaflson‘ (PSC)
method. The rcasons behind some of these names will become clearer later in this chapter. While the last mentioned name; PSC, is most
appropriale in describing the basic approach. we will generally refer to the method as “lineansation’ in view of common usage of that term n
the literature.
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2.2 Description of the Method .

2.2 DESCRIPTION OF THE METHOD

Estimaling Variance of a Linear Statistic

The basic assumplions about the sample design are that
[1]  The sample selection is independent belween strala.
[2] Two or more primary seleclions are drawn from each stratum.

[3] These primary selections are drawn at random, independently and with replacement. This last condition
requires sampling with replacement at all stages, but can be partly rclaxed as noted laler.

Given independent sampling with-replacement of two or more PS’s per stratum, the simple replicated sampling theory
can be used to eslimate the variance of lincar statistics, such as a stratum total for a certain variablc.

Consider a population total Y obtained by summing up individual values Y, lor elcments j over PSU i (giving the
PSU tolal Y}), then over all PSUs in stratum h (giving the stratum total Y,), and finally over all strata in the

population:

Y= EAY,, = E,,E,-Ym = EhEiE]Y"U

The above is estimated by summing appropriately weighted values over the units in the sample. Firstly, the aggregate
from a primary selection is estimated by a weighted sum of values for individual elements in the sample:

Y = E}why'yhij 23y

These are then summed over primary selections and strata to obtain an estimate y for the population total Y:

y = En)’h = Eh 2" 2. E.-ijhu"yhii 24y

The quantities wy,; are the weights associated with individual elements, determined in accordance with the estimation
procedure. The basic or ‘design’ weighls are taken as invcrsely proportional (o the probabilities of selection of
individual elements, but thcy may also involve other adjustments required in the process of estimation. The weights
can be scaled such that y estimates Y, actually or within a constant scaling factor. For the present purpose, the scale
is arbitrary and can be chosen as convenienlt. For instance in a self-weighting sample with a constant overall sampling
rate f = 1/F, individual weights may be taken as unily (so that the tolal y estimates Y/F), or as F (so thal y estimates
Y), or as any other convenient constant. Similarly for a non-self-wcighting sample, the individual weights may be
scaled such that their average per sample element is 1.0, or equals a uniform inflation factor such as F.
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2 Comparison Among Primary Selections

In a similar manner, y, estimates the stratum total Y, . Each weighted PS value y,, estimates the quantity (Y, /a,),
as does their mean (y, /a,), where a, is the number of PSUs selected at random in stratum h. The variance of
individual PS estimates is estimated by the averaged squared quantities

1 e Ya i
vary,) = —— 3 |yy-=2
he a,-1 ,z_.: hi a,

and that of their total y, estimated from a random sample of size a, by:

2

% -2 @3)

a,
a,-1 a,

var(y,) =

Finally, with independent sampling across strata, we have

var(y) = var(y_, y) = Y, var(y,) (2.6)

The remarkable and convenient feature of the above expression is that it involves only the appropriately weighted
PS totals vy, without explicit reference to the structure and manner of sampling within PSUs. This makes the
variance estimation formula relatively simple, not requiring the computation of separate variance components in a
multi-stage design. This also gives the method great flexibility in handling diverse sampling designs, and is indeed one
of its major strengths and rcasons for its widesprcad use in survey work.

Paired Sclections

A particularly simple and useful special casc of the above may be noted. With exactlly two selections per stratum
(a, = 2), Equation (2.6) becomes

2 2
var(y) = 2'214 yhl-ﬁ + ym_ﬁ = Eh(yhl_ylﬂ)z = E:. Ay: @7
2 2

where Ay, is (he difference between the two PS values in stratum h.

In many surveys, stratification of the PSUs is carried out to a point where exactly two units are selected from each
stratum, this being the minimum number requircd Lo estimate sampling errors. In practice the model is used even
more widely for the following reasons. (i) Often it is considered desirable to stratify to the maximum extent possible,
crealing as many strata as the number of PSUs to be selected, or even more than that number using special
techniques such as ‘controlled selection’. (ii) Even more commonly, primary units are selected from ordcred lists using
systematic sampling, which can be regarded as implicit stratification with one unit selected per implicit stratum. In
either of the above situations, variance compultation rcquires redefinition or ‘collapsing’ of the strata (o ensure that
more than one samp'le PSUs is assigned to each stratum so redefined. The paired selection model provides the
minimum collapsing necessary. (Section 4.4.) ‘

The two-psus-per-stratum model is sometimes referred to as the Keyfitz method (Keyfitz, 1957), though ‘paired
selections’ is the more commonly used term.

18



2.3 Extension to Non-Linear Statistics

The Finite Population Correction

The above formulation is based on the assumption that sampling is with replacement at all stages. Usually sampling
is done without rcplacement and the above expressions need to be modified to take that feature into account. This
can be achieved in part using the concept of so-called ‘ultimate clusters’ (see Kallon, 1979, for a description). Suppose
that the samplc is selecled wilh replacement at all stages excepl the last; at the last stage ultimate unils are selected
without replacemenl. We also assumec thal the overall sampling rale (f,) is uniform within each stratum. Such a
sampling scheme is equivalent lo dividing the population exhaustively into what has been called ‘ultimale clusters’,
till all elements in the population have been accounted for, and selecting a simple random sample (without
replacement) of a, ultimate clusters with rate [, from each stratum h. The concept of ultimate clusters denoles - in
the same way as primary selections - the aggregate of elements included in the sample from one selection of a PSU,
and surmises the results of the series of operations involved in obtaining the final sample. With this model, the
variance eslimation formula bccomes

2
vary) = ¥, |A-f). afl_):l(ym_ﬁ] (2.8)

a,

The above takes inlo account the cffect of sampling withoul replacement at the last stage, on the assumption that
samplc elements have been selecled with equal probability sampling of elements (‘epsem’), throughoul or within each
stralum separalely. Sampling withoul replacement at higher stages is not taken into account. Also, more complicated
and approximalc approaches may bc required when clement selection probabilitiecs vary more gencrally.
Kish (1965; p.432) proposcs computing an effective sampling rate [ as an approprialely weighted average of severul
f, valucs which may exist in the sample for different components (g) of variance, the weights being proportional to
the corresponding components of tolal variance. Usually approximalce wcights suffice for the purpose. In any case,
in many national houschold surveys, neglecting the [inite population correction is of no great practical conscquence.

2.3 EXTENSION TO NON-LINEAR STATISTICS: VARIANCE OF RATIOS AND
DIFFERENCES BETWEEN RATIOS

23.1 RATIOS

The combined ratio estimator of two aggrepates y and x

Yy _ E,,)’/. - Enzn)’h - Ehzvzjwlui‘y'w (2.9)
X Z/. Ly Z/. Ei L Z/. E. Ej WhyXhii

is perhaps the most common statistic involved in survey analysis. Both the numeralor (y) and denominalor (x) may
be subsiantive random variables - as for example in the estimalion of income per capita from a household survey,
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2 Comparison Among Pnimary Selections

wherey is the total income and x the total number of persons estimated from the survey. Ordinary means, percentages
and proportions are special cases of ratios, and therefore need not be discussed separatcly. In the case of a mean, the
denominator is a count variable, i¢ x,, is idcnlically equal to 1 for all elements in the sample. This gives

ij WaVhy | Zw Wi

For a proportion (percentage) the additional condition is that y,; is a dichotomy equal to 1 (100) or 0 depending on
whether or not unit j possesses the characteristic whose proportion (percentage) is being cstimated.

Lincarisation

Estimation of variancc for a non-lincar statistic with the primary sclection comparison method requires lincarisation
of the estimator using Taylor approximation. For a ratio r = y/x this gives the well-known expression:

var(r) = iz.[var(y) + rlvar(x) - 2r.cov(x,y)] (2.10)
x

where var(y) and var(x) arc as dcfined above, and cov(x,y) is given by a similar expression:

cov(xy) = E,, (¢! f,.) =Y, (- ).(y,u.—:—:) ] (2.11)

This extension of the method Lo a non-linear statistic requires some [urther assumpuons in addition to [1]-[3] noted
at the beginning of Section 2.2 above:

{4] The number of primary selections is large enough for valid usc of the ratio estimator and the
linearisation approximation involved in the standard expression for ils variance.

[S]  The quantities x,, in the denominator (which oficn correspond to the sample sizces per PSU; henceforth
rcferred to as the ‘cluster sizes') are reasonably uniform in size within strata.

The last mentioned requiremcent is concerned with keeping the bias of the ratio estimator small. The relative bias in
I 1s given approximaltely by the expression:

bias(r) _ |var(x) _ cov{x,y)
r x2 xy

More important in practical terms is the observation that relative error of the denominator of the ratio, se(x)/x,
provides an upper bound for the bias in r. According to Kish (1965), ideally this relative error should be below 0.1,
and anyway should not exceed 0.2 when ratio estimation is used. Its value depends on the variability within strata of
the PS sizes (*cluster sizes'), as well on thec number of primary selections in the sample. It is an objective of well-
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2.3 Extension to Non-linear Statistics

designed samples to keep the variability in these sizes small. The problem can be more serious in estimates for
subclasses of the population the selection of which cannot be fully controlled in the design of the sample.

Computational Simplification

A useful simplilication is obtained by introducing the computational variable

2, = %-OH-U,..-)'- 2= .2 2= Y 2% = O by definition. (2.12)

This reduces var(r) to the same [orm as var(y) of a simple total:

2
var(r) = ¥, lA-f). 4=, (z,u.-%'i] (2.13)
A

A

For a detailed treatment of variances of ratios and their differences, see Kish and Hess (1959). A numerical example
appears later in this section. -

Computations [or Subclasses

The above formulae can be used 10 compute variances Of ralios estimated over subclasses of the sample: the
procedure is simply to exclude from all summations any units not belonging to the subclass of interest. However, two
types of complications can arise in moving from the total sample to subclasses.

[1] The appearance into the sample of many subclasses cannotl be controlled. This can be the case in
particular of subclasses defined in terms of rare or ill-distributed characteristics of individual elements,
such as the level of education, occupation, or ethnic group of individual persons. Consequently, the
denominators x (which generally refer to the weighted count of subclass cases selected in the PSUs) may
become too variable, increasing the bias involved in the ratio estimation. In the extreme case (but by
no means a rare one for very small or not so well-distributed subclasses), the subclass sample may be
confined to a single PSU in some strata. Variance computation will then require (further) collapsing of
the straia to ensure that at least 2 primary selections are available from each redefined stratum.

[2] Many subclasses of interest are confined to only a subset of PSUs in the sample. This applies L0 highly
segregated classes, and especially to geographical domains (such as regions of a country), for each of
which separate resulls may be required. With reduced number of primary selections available [or
computing sampling errors for such subclasses, the variability of the variance estimates is increased.
(Section 4.4.5).
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2 Comparison Among Primary Selections

2.3.2 DIFFERENCES BETWEEN RATIOS

Comparisons between different sub-populations or between samples at different times is also a common objective of
many surveys.

If the two rarios being compared
r=ylx, and r' = y'Ix’

come from independent samples or strata, the variance of their difference is simply the sum of their individual
variances. '

However, in multi-stage designs the ratios being compared are usually estimated from sample elements coming from
the same PSUs and their covariances must be taken into account. For the difference of two ratios

/
(r—r/) = z - l.
x x

~

the standard expression for variance is

var(r-r'y = var(r) + var(r'y - 2.cov(r,r’) (2.14)
where var(r) and var(r’) are as defined earlier, and
cov(r,r’) = L/.[cov(y,y’)+r.r’.cov(x,x’)—r.cov(y’,x)—r’.cov(y,x’)] (2.15)

XX

As before, all terms involved above are computed from sample values appropriately weighted and aggregated to the
PS level.

Also by introducing

1 1
Zy = ;.(y,"—r.xu) - :/-.(y’u -r'x’)) (2.16)

the expression for var(r-r’) can be greatly simplified and reduced to exactly the same form as that for var(y) of a
simple aggregate:

var(r-r) = T, (-2 3, @u)* ]
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2.3 Extension to Non-linear Statistics

ILLUSTRATION 2A NUMERICAL EXAMPLE OF THE COMPUTATIONAL PROCEDURE

The computational formulae above can be most clearly illustrated by considering a small sample with 2 PSUs per
stratum (the paircd selection model). The following example is based on Kish (1965, Sec. 6.5; also discussed in Kish,
1989, Chapter 13).

Quantities y,; and y,, are the weighted cstimates from the two primary selections in stratum h, and Ay, = ¥,; - V2
their difference. Similar quantities are defined for variable x. The summations are taken over all strata h. Estimates
of the (wo totals (y=149; x=255) are given in the lolals row of Table 2A.(1), columns [1] and [4] respectively. With
paired selection, their variances and covariances are given by the simple expressions (which also appears in the Lotals
row of the table):

varG) = XYl = XAy (=21T:col(3)
var() = Y [xy-xf = X Axp  (=475icol[6])

cov(x,y) = Y ax,. Ay, (=293;col[T))

For the ratio r = y/x = 149/255 = 0.58, we delinc

1 .
Z, = ;.[y,u—r.x,u.], i=12

The result is shown in col[8]; note that by definilion, the sum z = 0.

Next, var(r) can be computed from

var(r) = —15[ Y Ay: + rz.z Ax: - 2r.) Ax, Ay, ]
x

V)
=1 [217 + 05824475 - 240.584293] = 5.65+10"*
255°
or alternatively, making use of the computational simplification explained above, from
var(r) = [ E Az: ] (i)

where the Az, valucs can be computed in either of the two forms:

1
Az, = 2,724 = ;.[(y“—r.xu)_ - (yu—r_xhz)]

1 1 |
Az, = ;.[A)’h—r.AIh = ;-[()’u')'u)"-(xu'xhz)]

The two forms give identical results (col[9] ). The tolals row of col[10] gives var(r) computed according to eq.(ii).
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2 Comparison Among Primary Selections

Similarly, Table 2A.(2) gives the results for the second pair of variables (y' and x').

For the difference of two ratios

=2 X (=22 _ L o009
Cry=1-7 G5 16 )

we have var(r-r’) = var(r) + var(r’) - 2.cov(r,r'). The two variance terms are computed as above, and cov as

cov(r,r) = L/[E Ay,‘.Ay,/, +rrly A:k.Ax,', -ry A:k.Ay,',— ry. Az,:.Ayh]
xx

1

=— [ 120 + 0.58+0.49+219 - 0.58+196 - 049+83 | = 696+10™* . (iii)
255+156

This can be simplified for computations as

cov(rr’) = ¥ [Az,,.Az,/,] (iv)

The results appear in the totals row of col[15]. Col[16] shows the quantities z," (adding to zero by dcfinition). The
quantities Az," can be computed from cols|9] of Tables 2A.(1) and (2), or from col[16] - ie, using cither of the
following two equivalent forms:

" / / /
Azy = Azy-Azy = [z)-7l-[74 -2l
" " I / /
Azy = 7yt = (4~ )-[2,-7

Their identical result appears in col[16]. Written in terms of these quantities, the expression for var(r-r') is greatly
simplilied, though it docs not show the contribution of its different components:

var(r—r/j = Z:Az”,,2

The resulis are given in the totals row of col[18].

Note that for computational accuracy and convenience in Table 2A, quantities like z and their differences Az are
shown multiplied by the factor 10 this factor being the order of magnitude of the denominator total x; this makes
the scale of quantities like z as used in the computation similar to that of the estimated ratio r = y/x. The square of
these quantities, and hence var(r), are multiplied by 10*. Note also 1hat though the figures below have been printed
to two decimal places, the actual computations were done to much higher accuracy.

24



2.3 Extension to Non-linear Siatistics

TABLE 2A. ILLUSTRATION OF THE COMPUTATIONAL PROCEDURE.

(1) variables x and y

0l 21 3] [41 [5] 61 n 81 91 [0
1 1 19 -0.04
2 9 2 4 16 3 9 6 -0.14 0.10 0.01
21 8 10 0.85 0.00
6 2 4 10 0 0 0 0.06 0.78 0.62
3 6 13 -0.63 0.00
15 -9 81 20 -7 49 63 1.30 -1.93 3in
41 13 23 -0.17 0.00
5 8 b4 8 15 225 120 0.13 -0.30 0.09
51 9 13 0.55 0.00
2 4 5 25 6 7 49 35 0.19 0.36 0.13
61 4 10 -0.72 0.00
7 -3 9 13 -3 9 9 -0.23 -0.49 0.24
71 5 7 0.36 0.00
7 -2 4 10 -3 9 6 0.45 -0.10 0.01
81 4 8 -0.26 0.00
5 -1 1 12 -4 16 4 -0.79 0.52 0.28
91 9 12 0.78 0.00
2 9 0 0 15 -3 9 0 0.09 0.69 0.47
01 9 20 -1.05 0.00
2 4 5 25 10 10 100 50 -0.72 -0.33 0.11
LT R A R I R R R R
149 7 217 255 15 &75 293 0.00 -0.69 5.65
Yy var(y) X var(x) cov(x,y) var(r)
r = 0.58;

var(r) = 5.65%10™ (Computed from equation (i)).

Column headings:
1=y, ([21= Ay,; (31= Ayh: in stratum h unit i; similarly [41-([6] for x.

(71= Ax,.Ay,; [81= z,; [91= Az,; [10]= Az .
[111= Axy.Ay,; [121= Ax,.Ax,'; [131= Ax,.4y,'; [141= Ax,'.dy,.

[151= Az,.8z,'; [161= z,; [171= Az"; (181= (az,")’.

(Table continued)
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Table 2A (cont.)

(2) Variables x' and y'

m [21 31 [41 51 [é1 n 81
1" 5 12 -0.59
2 6 -1 1 9 3 9 -3 1.00
21 1 1 0.32
2 7 -6 36 13 -12 144 72 0.37
31 2 10 -1.88
2 9 -7 49 10 0 0 0 2.61
41 7 12 0.69
2 4 3 9 6 [ 36 18 0.67
51 3 5 0.34
2 1 2 4 [ -1 1 -2 -1.26
61 6 13 . -0.27
2 2 4 16 4 9 81 36 0.02
71 3 6 0.02
2 3 0 0 4 2 4 0 0.66
81 0 1 -0.32
2 4 -4 16 10 -9 81 36 -0.60
91 2 13 -2.83
2 1 1 1 1 12 144 12 0.32
01 10 18 0.7
2 1 9 81 2 16 256 164 0.01
SUM=
7 1 213 156 26 56 313 0.00
y' var(y*) x! var(x*) cov(x'y')
rt = 0.49
var(r*) = 36.24%107 (Computed from equation (i)).

(3) Computations for the difference of ratios

1 (121 [131 [141 [151 [161 (7

11 0.55
2 -2 9 -3 6 -0.15 -1.14 1.69
21 0.52
2 12 0 0 -24 -0.04 -0.31 0.83
31 1.26 .
2 63 0 49 0 8.64 -1.31 2.56
41 -0.86
2 24 90 45 48 -0.01 -0.54 -0.32
51 0.21
2 10 -7 14 -5 0.57 1.45 -1.24 °
61 -0.46
2 -12 -27 -12 -27 0.14 -0.25 -0.21
71 0.33
2 0 -6 0 -4 0.06 -0.20 0.54
81 0.05
2 4 36 16 9 0.15 -0.19 0.24
91 3.61
2 0 -3 -3 0 -2.17 -0.23 3.84
01 -1.77
2 45 160 90 80 -0.23 -0.73 -1.04
SUM=
120 219 196 a3 6.96 0.00 6.89
cov(r,r')
r-rt = 0.09
cov(r,r*) = 6.96(Computed from equation (iii)).

var(r-r')
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27.99(Computed from the full expressions (i) and (iii)).

)] [101
-1.59 2.53
-0.05 0.00
-4.49 20.13

0.02 0.00

1.60 2.56
-0.28 0.08
-0.63 0.40

0.28 0.08
-3.16 9.96

0.7 0.50
-7.59 36.24

var(r')
181
2.85
0.69
6.56
0.1

1.54
0.04
0.29
0.06
146.77
1.08
27.99

var(r-r*)
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24 GENERALIZATION TO OTHER COMPLEX STATISTICS

The above are particular examples of the approach of linearisation of non-linear statistics using Taylor expansion..
In general terms, suppose the objective is to estimate the variance of a statistic which is a non-linear function of.
apgregates Y, lo Y, :

Z=-fY,Y,..,Y)
which is estimated from the sample by z defined in the same form
= .ﬂ }'1. }'2;----, y, )

where the y’s are sample aggregates estimating the corresponding population totals Y’s. To terms of the first degree
in (z-Z), the Taylor series approximation for z assumed close 10 (in the neighbourhood of) Z is

2=2+) 0,-Y)D, D=0320Y,
where the partial derivatives D, are evalualed al z=Z and taken as constanis.

The above, with the added assumption that the unknown constants D, can be replaced by their sample estimales d,,
gives

Var(z) = Var(}, D,y,) = Var(}_d,y,) = Var(z) (217

The above means that variance of non-linear z can be approximated by thal of z;, a linear [unction of the simple
agpregates y,,

Z, = Ekdk'yk (218)
giving the general expression:

var(d) = var(y", dyy) = Y, divarty) + ¥, dpd, cov(y,y,)

The above expression involves a sXs covariance malrix of simple aggregates y, (k=1..s), with s variance terms and
s(s-1)/2 pairs of identical covariance terms. These can be evaluated from expressions of the form given earlier for
linear statistics. As an example, consider an ordinary ralio z = yfy,, for which

dl = adayl = 1/}'2;

d, = dzfoy, = -2y .
var(z) = iz_[var(yl) + z’-Va’()’z) - 2z.cov(yl,y2)].
y2
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2 Comparison Among Primary-Selections
The expression above is exactly the same as the expression (2.10) given earlier for var(r), observing that here

YW=Y Y,=x andz=r
in terms of the notation used earlier.

Computational Simplification

The general expression for variance can be greatly simplified for computational purposes observing the following,
based on Woodrull (1971), building on the work of Keyfilz (1957) and Kish (1968). In the linear statistic z,, the
aggregalcs y, are by definition (appropriately weighled) sums of PS estimales

Ve = Em Yehi
which means that

Z = El dyyg = Et dr(z:;.,- Yin)

Noting that d, are constants not dependent on (h,i), the order of summation over k and (h,i) can be reversed giving

L= E)u' (Etdk')'u,,) = EM Z,,, Say

It follows that z, can also be written as the simple aggregate of quantities compuled at the PS level, namely of
quantitics

Zp = El dyyy, Where d=0Z[oY, at Z =7, z, = E'.z,u. (2.19)

resulting in the concise expression for var(z), without the need 1o work out the full covariance matrix:

a,

var(z) = varz) = Y., “'fn)'a—l-z.(zm'%)z _ (2.20)
h ' h

It only remains to develop the expressions for and numerically evaluate the partial derivatives of the estimale z from
the sample data. '

Particular Applications

Below are examples of particular applications of thc above o various non-linear estimators (z) encountered in
practical survey work. All that is necessary is Lo specify the quantities z,, to be formed at the PS level in each case.
To present the expression more concisely, the following abbreviated notation has been used:
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2.4 Generalisation 10 Other Complex Statistics

1 Yh T
B = S OuT ) = r.(-yﬂ-T’")

In the notation, y, X, y’, X' etc denole simple aggregaltes; y,, eic the corresponding PS values, and z the statistic of

interest such as a ratio z = y/x. Note that the PS values are appropriately weighted estimates; for example

Yoi = Ei Wei-Vnip

giving ¥, =3 Y ¥ = Y,V

The first two cases of the following have already been considered in more detail.

[1] Ordinary ratio

z= y/.t, ZM = tlu

|2] Difference of two ratios

z=r-r =yx -y, z, =17,

[3] A weighted sum of ratios

z= Ek Wery, = Ek W O 5 2, = Ek Welin

[4] Ratio of ratios (*double ratio’)

~
—

'Y 2
z=1/r==]=; 2z —[r,-7,]
! o LA L
[5] Product of ratios
For the product of two ratios
/
= r,r/ = _y_ . y_’
X xl
,
g, =g vty =zl H e 2
r r/

More gencrally, for any product of ratios:

(2.21)
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2 Comparison Among Primary Selections

L.
"-:H;’t; Z;..-=Z-Etﬂ

[6] A weighted sum of double ratios

T Wl.- /
2=y, W"T =Y Wz, Gay), 7, =Y, r—/.[tu"—zt.t )
k k

Double ratios appear for example when we consider ratio of indices (which arc themselves ratios) for two periods -
as in the relative of any current year which is the ratio of some indcx for that ycar to the index for some base year.
Estimales of such relatives may be differcnced, averaged or otherwise combined [rom different periods or samples,
and so on. This pives rise to the general form [6]; forms [1] to [5] above are special cases of this. For a detailed
trcatment of standard errors of such indexes, sce Kish (1968).

[7] A statistic such as_the regression coefficient, expressed as

2
= 2y WhiYna g | X, Wiihy -

This can be handled in a similar way by [irst defining at the level of individual clements (j) the following two variables

2
Ui = YnipFhip Ve T Xhj

which can be aggregated over the PS’s and strala in the usual way:

L= E;. b, = E;.,- by = E;.,,- Wil gy

and a similar expression for v. This gives z in the form of the ratio ufv, so that

1
Ty = ;-("/u"z"’/u')

Tepping (1968) provides a general description of the approach and among other things, shows how variances of
multiple regression coefficients may be estimated.
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2.5 APPLICATION OF THE METHOD IN PRACTICE

Though the basic assumpltions regarding the structure of the sample for application of thc method are mel reasonably
well in many large-scale national household surveys, often Lhe assumptions are not met exactly. Some of thc more
common approximations and how they may be dealt with in practice arc noted below, with some examples. The issues
will be discussed more fully in Chapter 4.

Systemalic sampling.

Systematic sampling of primary units is a common and convenient procedure. Pairing of adjacent units to form strata
to be used in the compulations is the usual practice, resulting in the paired selection model noted earlier. Of course
this results in some over-estimation of variance, Lo the cxtent the possible gain of ordering of the pair-of units in each
‘collapsed stratum’ is disregarded. Whilc this over-estimation is not avoided, variance of the variance estimator can
be reduced (by a factor of 3/4) by using an allernative scheme of grouping of the units. This scheme is 10 ulilize all
(a-1) successive differences in the ordercd list of a primary units, in place of only the a/2 comparisons among non-
overlapping pairs. With this, the basic cxpression for variance becomes

B 0/2 a-1 . . .
var(y) = -[:1—§ i - ym]z' (222)

Decep stratification.

Oflten stratification is carried to a point where only onc or even lcss than onc primary unit is selected per stratum.
This requires collapsing of similar strata 1o define new strata such that cach contains at leasi two sclections, which
are then assumed to be independent. Such collapsing or grouping must be done on the basis-of (similarily in)
characteristics of the strata, and not of the particular units which happen to be selected. Otherwise the variance could
be seriously underestimated.

Small and numerous pnmary sclections.

Sometimes the primary units are too small, variable or otherwise inappropriate (0 be used directly in the variance
estimation formulae. More suitable computational units may be defined by such techniques as random grouping of
units within strata, and linking or combining of unils across strata.

ILLUSTRATION 2B SOME EXAMPLES

Variance estimation from comparison among primary selections is perhaps the most widely used method in praclical
survey work. The following are just two examples which bring out some of the points noted in the previous section
concerning the definition of the sample structure and computing units for application of the method. The following
examples are based on (wo national surveys, in Sri Lanka and Malaysia, both conducted under the World Fertility
Survey programme some years ago.
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2 Comparison Among Primary Sclections

Example 1 (Sri Lanka).

The survey involved a two stage sample of households. At the (irst stage census enumeration areas (EAs) werc
sclected systematically with probability proportional to population size from geographically ordered lists stratified by
region, type of place and a hierarchy of administrative divisions within each region. From roughly 50 explicit strata,
a sample of 700 PSUs was sclected such that the resulting sample of households was sclf-weighting within each region.
However, 10 compensale for non-response and other shortcomings in implementation, additional weights were
introduced at the PSU level. The number of households selected per PSU was small, averaging around 10, but there
was also a fair amouni of variability around that average. By merging small PS’s with others in the sample, around
400 somewhat larger and mor¢ uniform computing units were formed. Within each explicit stratum, adjacent newly
defined units were paired to form around 200 ‘computing strata’, and the two units within each such stratum were
assumcd (0 have been sclected independently with replacement. (The overall sampling rale was small enough for the
finite population correction to be negligible.) As a pood practice, the survey data files conlained codification of Lhe
strata and primary units as dclined above for computational purposes, as well as the final cstimation weights 10 be
applied 10 individual ¢lements in the sample. Most statistics of interest were in the form of combined ratios, for which
the paired selection model could be applied over the 200 computing strata; an alternative would have been o use
successive differences between adjacent units following their order of selection, separaicly within each of the 50
explicil strala.

Example 2 (Malaysia).

The survey population was divided inlo two sampling domains with very diflferent designs. In the urban domain a
single stage systematic sample of around 1500 dwellings was selected [rom geographically ordered lists. In rural arcas
a sample of arourid 4500 houscholds was selected in two or three stages, starting with a sample of 100 loculities at
the first stage. For this purposc the rural scctor was divided into 100 explicit strata, so as to select one locality (PSU)
per stratum. ' '

The construction ol suitable computing strata and units (primary selections) required a number of steps. In the urban
sector the single stage sample of dwellings was divided into 30 zones, each zone containing around 50 adjacent
dwcllings [rom the ordered list. These zones served as the computing strata. Within each zone, sample dwellings were
allocaled alternatively to form lwo computing units. Such a system is expected to reflect the actual systematic selection
of dwellings.

In the rural domain, strata were examined on the basis of information available prior to sample selection, and paired
on the basis of certain characteristics related to the subject matter of the survey. (Ideally, such pairing of strata should
be done before sample selection to avoid subjective bias.) Each pair so defined constituled a computing stralum, and
the sample of 1wo localities within each gave the pair of primary sclections for the purpose of variance cstimation.

It may be mentioned that in practice, difficulties were encountered in computing sampling errors because information
on characteristics of the original strata (not only the selected PSUs), required for their pairing, was not adequately
documented. This brings out the importance of the often noted point thal it is essential to preserve a full description
of the sample structure, preferably as an integral part of Lthe survey data [iles. )

32



2.6 Technical Nole on the Basis of the Method

2.6 TECHNICAL NOTE ON THE BASIS OF THE METHOD

In a multistage design, each stage of sampling contributes to the overall variance of the survey estimate. Some survey
practitioners may have the mistaken impression that computing variances simply (rom a comparison among estimates
at the PSU level amounts to negiecting the contribution (o variance of sampling at stages below the first stage of
selection. While the derivation of the basic results of sampling theory is outside the scope of this Technical Study,
the following discussion in the context of a simple (wo-slage design is presented (o clarify the basis of the method
described in this chapter. Of course, the results are available in more detail in many good text books on sampling.
(See for example, Kish 1965, Section 5.6.)

To understand the basics, we consider a population of clusters of cqual size (B), with a two stage design consisting
of a random selection of (a out of A) clusters, followed by the selection of a constant number (b out of B) of
clements within each selected cluster. The overall sampling rate f = ab/AB = n/N is constant for all elements in the
poputation.

Firstly, it can be scen that for a population divided into clusters, the variabilily between clements in the population

=y, (Y,-1)YAB

can be decomposed into Lwo components:

[1]  the belween-clusier component

of = ¥, (-1

[2] and the within-cluster componcnt

o = X, ¥, 1)aB

giving

B
S, = —.0
b B-1 b

in terms of which the above decomposition can be approximated as:
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on the reasonable assumption that N and A (respectively the number of elements and PSUs in the population) are
large. ‘ '

With the two stage design imposed on this population, the two components of variance of an cstimate such as the
sample mean are:

{1}  the between-cluster component

2

S
VarG), = (1-2).=% (2:23)
A a
[2]  and the within-cluster component, which for a sample of b elements from a single cluster would be
2
) b, 5
Var = (1-=).—
6’)5’1 B) b
so that for the actual sample of a cluslers il becomes
b, S 2.24)
b (2.2
Va = (1-=)—.
"0y B) ab
Total variance is the sum of the two components:
Sz b S: 22'
Var) = 1-2).22 + 1-2). 22 (225)
0 A a ( B ab

To estimale these components from the sample, we define similar quantities (with the summations over the sample)

52 = X, G- Ha@-1) (2.26)

and

s = 3, 0y lab-1)). (2.27)
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The second quantity is based on a simple random sample within ¢ach cluster, and hence provides an unbiased estimate
of the corresponding population value for the within-cluster component:

EGsD) = S; (2.28)

However, the first quantity is not simply an estimaltc of the between-cluster component: it reflects that variability as
well as the additional variability resulting (rom the fact that it is based only on a subsample of elements within each
cluster. It can be shown that its expected value is given by the following.

P
E(s?) = §* + (1-27.28 (2.29)
(sa) = S, (_ 3

Substituting into Equation (2.25), it is secn thal an approximalely unbiased estimate of variance is provided by

2
ab. Sa

2
Sa L q-pla (2.30)
AB) a a-p. a’

var(y) ~ (1-

the approximation involved in the above expression being :

which is small, cspecially in national samples where the first stage sampling rate (a/A) is small.

The implication of the above result can be gencralized to many practical multi-stage designs involving complex
subsampling within PSUs of variable sizes. Therclore, it is a result of great practical utility; it indicates that good
estimates of the total variance can be provided simply by certain sample quantities aggregated to the level of PSUs,
without explicitly involving any reference to the complexitv of subsampling within the primary units. Of course the
subsampling does influence efficiency of the resulting sample, but its effect is largely incorporated in the s;°* term
computed from the sample values. With variable cluster sizes and sample takes, generally sample aggregates (rather
than cluster means per element) are cstimated first, and then proportions or means etc are estimated as ratios of the
relevant aggregates. For these, variances are given by expression like (2.8) and (2.13).

Some discussion on variance componenis in the context of a general, more complex sampling design is given in
Section 5.6 below.

35






COMPUTING SAMPLING ERRORS:
COMPARISON AMONG SAMPLE REPLICATIONS

3.1 INTRODUCTION

The idea of replicated variance estimation was introduced in Section 2.1. In the linearisation method described in the
preceding chapter, the primary selcctions are taken as the replicates and their sampling variability computed within
cach stratum separately, and then aggregated across he sirata. The alternative approach is (o consider replications
of the full sample, cach of which is of the same design and reflects full complexity of the sample, including its
stratification, and provides a valid estimate of the statistic of interest. A replication differs from the full sample only
in sample size. However, (o be useful in thc prescnt context, the size of each replication necds 1o be large enough:

[1]  for it to reflect the structure of the (ull sample, and

2] for any estimale based on a single replication to be close to the corresponding cstimale based on the
full sample.

The approach involves division of the full sample, by design or subsequent to selection in some manner, into a sel
of replications each of the same design. Using the same estimation procedure, estimates y, for cach replication, their
average y(Eq. 2.1), and the corresponding estimate from the full sample are oblained. The form of the estimators
can be of any complexily: it may for example be a population total, a ralio, a combination or function of ratios,
regression or correlation coefficients elc; it may relate (0 the total population, or to any subclass of the population
distributed across the replications. We will denote the full sample estimale as y for the lincar case, and as y  [or
the non-linear case.



3 Comparison Among Sample Replications

The replications are normally constructed such that among them they cover all the units in the sample, each unit once
or the same constant number of times. This means that for a linear statistic - ie an estimate which is a linear function
of the sample values - the replicated average y is the same as the full-sample estimate y. However, for non-linear
estimators (which are the main reason for using the method), the two are not necessarily the same. This is illustrated
by the following simple cxample. For the ratio y of two sample aggregates x; and X,, we have the estimate from
replication j

giving the average of replicated estimales as

while the [ull-sample estimatc 1s

y- =
2 Ele

n_o XYmoo

e

The two are not the same, since the former is the average of scparate ratios while the latter is a combined ratio.

The main attraction of the replication comparison method to variance estimation arises from the fact that, with
sufficiently large and complex replications each reflecting the full samplc, the estimates y, [rom individual replicalions,
and even more so their average y , are expecled to be close to the same estimate based on the full sample. This is
the case cxactly in rclation to a linear statistic such as a sample total (y), but approximately also the case for a non-
lincar estimate ( y ) of any complexity based on the full sample. This also applies to the closeness between the
variance of the simple average of replicated values, var(y), and var(y) of the full-sample cstimate of interest. This
means that if the former can be oblained, it can be used 10 approximate the latter, irrespective of the complexity of
the estimate y . Practical application of this very convenient approach has two requirements, in addition to
[1] and [2] noted above regarding the size and structure of each replication to reflect the full sample, namely:

[3] that a procedure is cstablished to estimate wvar(y), which is then used to approximate var(y) ;

[4] and that the number of replications used is sufficicntly large to yield a variance estimate with adequate
precision.

Within the group of methods based on comparison among replications, two quite distinct approaches may be noted:

A a comparison among estimates based on independent replications which together comprise the full -
sample; and

B. a comparison among estimates based on ovcrlapping ‘pseudo’ or repeated replications, constructed by
repeated resampling of the same parent (full) sample.
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Method [A] is based on the assumption that the parent sample can be regarded as consisting of a number of
independent replications or subsamples, each reflecting the full complexity of the parent sample, differing from it only
in size. With these assumptions the replicated estimates can be regarded as independent and identically distributed
(1DD) random variables, so that the variabilily among them gives in a very simple form, a measure of variance of the
overall sample cstimalor. The limitation of the method is thal in many situations the total sample cannot be divided
into a sufficient number of independent replications of adequale size for the method to be applicable; its strength
is its simplicity when applicable. The method is discussed with illustrations in Section 3.2.

Method [B] refers to the family of resampling methods for computing sampling errors for complex designs and
stalistics in which the replications 10 be compared are generated (hrough repeated resampling of the same parenl
sample. Each replication is designed to reflect the full complexity of the parent sample. In contrast to the independent
replication method whose limitations the resampling methods are designed to overcome, the resampling methods are
based on overlapping replications which reuse the sample selections in several (many) compulting units. With repeated
resampling the variance estimates are made more stable through averaging over many subsamples. However, since
the replications generaled are not independent, special procedures are required 10 control the bias in the variance
estimates provided by their comparison.

Various resampling procedures have been developed which differ in the manner in which replications are generated
from the parent sample and the corresponding variance estimation formulae evoked. Three general procedures known
as the balanced repeated replication (BRR), jackknile repealted replication (JRR), and the boolsirap are available,
though the last is nol vet established for gencral use in the presence of complex selection methods. Generally, the
resampling methods can more easily deal with complex statistics and estimation procedures in comparison with other
methods. However, they tend 1o be technically and compulationally more complex; they are also somewhat more
restrictive in the sample designs handled in comparison with the linearisation approach of Chapter 2. In relation to
stalistical properties of the variance cstimates produced, the three methods - linearisation, BRR and JRR - have been
found 10 yield comparable and generally satisfactory results in complex situations (Scction 4.3). The basic difference
between JRR and BRR may be stated as follows. With JRR, a replication is formed by dropping a small part of the
1olal sample, such as a single PSU in one stratum; consequently each replication measures the contribution of a small
part such as a single stratum. In BRR, a replication is formed by dropping a part (such as one half) of every stratum-
and it measures the variance of the entire sample. Comparing BRR and JRR, the former generally requires less
computational effort, bul can have two major disadvanlages: it is (cchnically more complex; and more importantly,
it tends 10 be more restrictive in the type ol sample designs handled. For these reasons, JRR is the preferrcd
approach. However, a certain lack of readily available general purpose compulcr software is a disadvantage common
o the resampling methods at present.

3.2 VARIANCE FROM INDEPENDENT REPLICATIONS

3.21 THE PROCEDURE

The basic requircment of the method is that, by design or subsequent Lo sample selection, it should be possible 0
divide the parent sample into more or less independent replications, each with essentially the same design as the
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parent sample. In a multistage design, for example, the parent sample has to be divided at the level of the PSUSs, ie
divided exhaustively into a number of non-overlapping replications each consisting of a separate independently
selected (and ideally also independently enumerated) set of PSUs. For a combined estimation over a number of strata,
each replication must itself be a stratified sample covering all the strata.

With independent replications, each providing a valid estimate of the same population parameter of interest, the
results of the theory of ‘independent replicated variance estimator’ noted in Section 2.1 can be directly applied. The
variance of the simple average of n replicated estimates y,

y = —E’iy’; var(y) = l

n

Y, (y,—ﬁ)z} (3.1)

n-1

provides an estimate of the variance of the same estimate from the full sample, exactly for a linear estimate v, or
approximately for a non-linear estimate y. A somewhal conservative estimator (giving higher value) is obtained by
replacing y in the summation by y; that is by writing:
09 2
var(y) = <. 2,07 (3:2)
n

n-1

The above may be modified to incorporate the finitc population correction if that is important. With a uniform
overall sampling rate f for the full sample, this amounts to inserting the factor (1-f) on the right hand side. With
variable sampling rates, a simple approach would be o lake "(1-f)" above as an appropriately averaged value (see
Section 2.2).

3.2.2 CONSTRUCTING INDEPENDENT REPLICATIONS

It is useful to begin by staling Lhe requirements which should be met ideally in application of the procedure. The
basic requirement is that the parent (full) sample is composed of a number of independent subsamples or replications,
each with the same design and procedures, but selected and implemented independently. The requirement of common
and independent procedures applies to sample selection as well as to data collection and estimaltion.

1. Sample Selection. The replications should be designed according to the same sample design, on the basis of
the same frame and type of units, system of stratification, sampling stages and selection methods, elc. as the
parent sample. In drawing several replications from the same population, independence requires that each
replication is replaced into the frame before the next is drawn and the randomised selection procedure is
applied separately for each selection.

2. Data Collection. Following sample selection, the procedure for data collection should be the same and applied
independently for each replication. Dala collection refers to various steps in the whole measurement process,
including questionnaire design, staff recruitment and training, mode and procedures for data-collection,
fieldwork organisation, supervision and control, recording and coding of responses, data entry, and so on.
Independent application of common data collection procedures requires, for example, that independent sets
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of field staff (supervisors, interviewers, coders, elc) drawn in principle from a common pool, are used for
different replications.

3. Estimation. A common estimation procedure refers not only to the mathematical form of the particular
estimator used, but also to all the other steps involved in computing the final ¢stimates from the survey data
- steps such as data editing, impulation, treatment of outliers, weighting and other adjustmenlts. Independent
application means that all steps in the estimation procedure are applied separately to each replication. For
example, if the sample data are weighled to agree with certain population control totals, it is implied that the
relevant weights are determined independently for each replicated subsample, as distinct from using a common
set of weights determined on the basis of the full data set.

323 APPLICATION IN PRACTICE

Approximation to Independent Replications

In practice the above requirements arce rarely met exaclly. For instance, if the estimation procedure is complex,
repcating all ils steps for each replication can be too expensive and lime consuming. Hence while separate estimates
arc produced for each replication (as must be done for the variance estimation procedure 10 be applied), some steps
in the procedure - such as impultation, weighting, and adjustment of the resulls against external control lotals - are
applied only once to the sample as a whole. The results can be different if these steps were applied 1o the sample
results from each replication separately and indcpendently. Strict independence of data collection procedures is even
more difficult to implement. That would require organisation and implcmentation of numerous steps in the
measuremenl process independently for each replication, possibly involving a great increase in cost and inconvenience.
(Some such separation in an appropriate form can of coursc be useful in the assessment of non-sampling errors.)

Perhaps the most critical requirement is that of independent sclection of replications following the same design.
Ideally, the full sample may be formed by combining independent subsamples. Usually, however, it is a matter of
partitioning an existing sample into more or less independent subsamples. 1t is important 1o note that in a multistage
design, the partitioning of the sample should be done at the level of primary seleclion, ie all sample elements within
a PS should be assigned 1o Lhe same replication. To estimate the total variance across strata in a stratified sample,
cach replication must itself be a stratificd sample parallelling the parent sample.

The sample may be divided into replications at the time of selcction or subsequenily, aficr selection. Consider for
instance a systematic sample in which primary units are 1o be selected with interval [; the sample may be selected in
the form of n replications, cach selected systematically with a distinct random starl and selection interval = (n.l).
A more convenient and common alternative is to select the full sample in one operation, but in such a way that it
can be subsequently divided into subsamples which are by and large independent and reflect the design of the full
sample. As an example, consider a systematic sample of 500 PSUs to be divided into 20 repfications each of sizc
500/20 = 25 PSUs. One may imagine an ordered list of the 500 sample units as divided into 25 ’zones’, each
comprised of 20 adjacent units. A replication would consist of one unit taken from cach zone: [or instance the first
unit from each zone forming the first replication, the second unit from each zone forming the sccond replication, and
so on. In fact, such a simple scheme can be applied with greal flexibility and permits many straightforward variations.
The unils in the full sample may have been sclected with uniform or varying probabilities: the above subsampling
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scheme relains the original relative probabilities of selection. If the original sample is stratified, one may order the
selected units stratum after stratum and divide the entire list into equal zones for the application of the above
procedure. The effect of original stratification will be reflected in the replications if the number of units to be
selected is large enough for all or most strata to be represented in each replication. Allernatively, units may be
cross-classified by zone and stratum, ie cach stratum divided into a number of zones and each zone linking units
(sample PSUs) across a number of strata. Deming (1960) provides many examples and extensions of such procedures.

Choice of the Number of Replications

In most multistage designs the number of primary selections involved is limited, which constrains thc number of
replications into which the sample may be divided. There are of course samples in which the total number of PSs
available is so inadequate that the number of replications and the number of units per replication both havc 10 be
rather small. In that situation the method of indcpendent replication is inappropriate for variance cstimation.
However, when the sample design permits, choice still has to be made between the extremes of having many small
replications, or having only a few but large replications. If many replications are created, the numbcer of PSs per
replication may become too small to reflect the structure of the full sample. This will tend Lo bias the variance
estimation. On the other hand variances estimated from only a small number of replications tend Lo be unstable, ie
themselves subject to large variance. There is no agrecment as to the most appropriate choice in general terms. Kish
(1965, Section 4.4), for example, summarises the situation as follows: "Mahalanobis (1946) and Lahiri (1958) have
frequently employed 4 replicates... Tukey and Deming (1960) have often used 10 replicates... Jones (1956) presents
reasons and rules for using 25 to 50 replicates. Generally I too favour a large number perhaps between 20 and 100."

The primary argument in favour of having many replications (each necessarily comprised of a correspondingly small
number of units) is that the variance e¢stimator (equation 3.1) is more precisc and the statistic y (average of the
replicated estimates) is more ncarly normally distributed. The precision of the variance estimator decreases as the
number of replications is reduced.  Furthermore, for a given value of variance or standard error, the interval
associated with any given level of confidence becomes wider. This is because with n replications, estimate var(y)
is based on (n-1) "degrees ol freedom”, and in constructing the confidence interval for the population parameter in
the form

¥ t tfvar(y)]'?

the value of  (and hence the width of the above interval) corresponding to any given level of confidence incrcases
with decreasing n. This can be seen from the standard Student-t distribution. Another consideration is that with a
small number of replications, it is nccessury to assume that the individual replicated estimates y, are normally
distributed, though mild departures from normality arc generally not important; fortunately the assumption of
normality of y, is improved as the number of primary selections per replication is increased. In any case, when the
number of replications is large, it is necessary to assumc only thal the mean y is normally distributed.

On the other hand, having [cwer and larger replications also has some statistical advantages. (1) With large sample
size per replication, the individual replicated cstimates y, are more stable and more nearly normally distributed. This
helps in infercnce. (2) The replicated estimates y, and even more so their average y is closer to the estimatey

based on the full sample for non-lincar statistics as well. This facilitates extcnsion of the method of variance
estimation (0 non-linear statistics, which is the main justification for its use. (3) Most importantly, increasing the
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number of primary units per replication makes it easier (o reflect the structure of the full sample in each replication,
which reduces the bias in the variance estimaltor.

Also should be noted some practical considcrations and wider objectives for opting for a smaller number of
replications, each consequently larger and potentially more complex in design: (4) With fewer replications, there is
less disturbance of the overall design as a result of the need to select the sample in the form of indcpendent
replications. (5) The additional cost and difficulty involved in separate measurement and estimation is smaller.
(6) With a smaller number of replications, it is more feasible to appropriately randomise the work allocation of
interviewcrs, coders, elc L0 measure non-sampling componenis of variance. (7) Replicated or 'interpenetrating’ designs
can be useful for more general checking of survey procedures and results. Thesc objectives are better served when
the number of replications to be dealt with is small. Lahiri (1957) for instance provides a number of illustrations from
the Indian National Sample Survey. (8) The same is true of displaying the survey resulls separately by replication to
convey 10 the user a vivid impression of the variability in sample survey results (Illustration 7D). It is of course also
possible to have a larger number of replications for more stable sampling error estimation, and collapse them to a
smaller number for objectives (6), (7) and (8).

In view of the above conflicting considcrations and opinions, it is not possible (o make specific recommendations on
the appropriate choice ol the number and size of replications. With say 100-1000 PSUs in the sample, a simple rulc
which has becn found rather reasonable is (0 begin by making both the number of replications and the number of
samplie PSUs per replication cqual to the squarc-root of the given total number of PSUs in the sample. For example.
with somewhat over 200 sample PSUs, it would result in around 15 replications each with 15 PSUs. Similarly, with
600 or so PSUs, one would begin by considering around 25 replications, each with 25 PSUs (Illustration 3A).

ILLUSTRATION 3A SOME EXAMPLES OF REPLICATED SAMPLING

The following provide a number of examples of the actual or polential use of replicated sampling in practical survey
work, especially in developing countries.

Example 1. Samples with Several Hundred PSUs Selccted Systematically

One of the basic factors favouring more wide-spread use of replicated sampling in developing countries is that, in
many situations, various practical considerations favour the use of sample designs with relatively small and compact
but numerous PSUs. The stratification is often largely obtained through systematic selection of PSUs from
geographically ordered lists, rather than through an elaborate system with many cxplicit strata. These features of the
design facilitate the division of the sample into a number of indcpendent replications, each with a reasonably large
number of sample PSUs to reflect the structure of the full sample. For instance many surveys are based on samples
of census enumeration arcas (EAs). Typically these are quite compact areas with say 50-300 households on the
average, from which say 10-50 households may be selected inlo the sample per EA. Hence national surveys typically
based on samples of several thousand households may include several hundred EAs as primary units. An cxample
is provided by the national fertility surveys conducted under the World Fertility Survey during 1972-84: the following
were among the surveys based on 300 or more PSUs each, even though the sample sizes were modest (mostly in the
range 4000-7000 households per survey; see Verma 1980, Scott and Harpham, 1987):
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Country No.of PSUs Country No.of PSUs

in sample in sample
Ghana 300 R.of Korea 390
Portugal 300 Peru 410
Pakistan 326 Jamaica 428
Panama 354 Venezuela 480
Senegal 358 Trinidad 648
Indonesia 366 Philippines 742
Colombia 370 Sri Lanka 750

In most cases the sample areas were selected systemalically after stratification and ordering of the lists by type of
place, administrative division and geographical location. Following the same ordering, the [ull sample can be easily
divided inlo replications systematically, each replication cssentially retaining the original stratification. For instance
the 480 PSUs in Venezuela may be systematically partitioned inlo say 12 replications of 40 areas each, taking unit
numbers 1, 13, 25, elc, into the first replication, unit numbers 2, 14, 26, elc, into the second, and so on; or one may
construct 24 replications each with 20 areas; or some other combination of the number and size of replications. If
areas in the original sample were selected with PPS (probability proportional to size), the PPS eharacter of the
selection will be retained in the replications as well. Estimates for any slalistic, however complex, may be produced
for each replication separately, and variance of the estimator for the full sample computed simply by an expression
of the form (3.1)

Example 2. A Replicated Master Sample

An example covering many household surveys on diverse Lopics from one country is provided by the sampling scheme
devcloped in relation (0 the sampling frame created from the 1990 Population Census of Indonesia. (The [ollowing
description is based on unpublished documentation at the Indonesia Central Bureau of Statistics.) From the Census
frame of areas, a large master sample of around 4000 EAs (PSUs) is selected with PPS after urban-rural,
administrative and geographical stratification. Retaining the original ordering of selection, the combined master
sample list (formed by placing one stratum after another) is systematically divided into around 50 replications, each
with 80 or so EAs. Subsampling from the master sample for a survcy on any particular topic would generally involve
selecting simply a subsel of the replications at random, followed by listing and sampling of households within the
sclected areas to yield a sample with the rcquired number of areas and households. Depending on the topic, a
national sample may contain say 400-2000 EAs, ie 5-25 replications. In practice the system is more flexible than may
appear because systematlic division of the ordered master sample lists can be casily repeated with any subsampling
interval. For instance by doubling the interval, twice as many replications can be created each with half as many EAs;
the same result may be obtained by systematically selecting one in (wo areas from each original replication. Such
modifications can be convenient for smaller surveys. In a similar fashion, fewer and larger replicalions may be
constructled for bigger surveys. The attractiveness of the scheme for the routine production of approximate estimales
of sampling errors from household surveys covering diverse topics is obvious. There is scope for improvement in the
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precision of variance estimates through averaging over related surveys. The main requirement in estimating variances
would be 1o tabulate the survey results separately by replication.

Example 3. Indepcndent Enumeration of Subsamples

In the Indian National Sample Survey (NSS), the division of the total sample for any annual round into (wo or more
(most often 1wo) subsamples within each explicit stratum has been a permanent feature of 1he design. Prescntation
of the final estimates by subsamplc along with the full-sample estimates help in conveying Lo the user a rough but
vivid idea of the degree of uncertainly involved in the survey results. Often, unexpectedly large divergences between
the subsample cstimates can help to locale exceptional field or data processing problems. (This indced was a major-
objective of the approach.) Furthermore, estimates of standard errors can be computed at stratum as well as the total:
level. On certain assumptions aboul distribution of thc subsample cstimates, non-parametric confidence intervals can.
be construcied for the population parameters. In some earlier rounds of the NSS, different field staff surveyed
different subsamples, and tabulation of the subsamples was done at different processing centres. In this manner,,
comparison of subsample results provided an indication not only of the sampling error, but also of some components
of variance arising [rom other, nonsampling, sources (India, 1990). Some of the resulls, showing the range of
estimates from different replications, have bcen reproduced in Illustration 7D.

Example 4. Replications in a Single Stage Stratified Sample

The use of replicated sampling can of course be most convenient and appropriate in single stage designs with a large
number of 'primary’ units. Such is the case with many surveys of establishments where individual establishments form
the units of sclection and analysis. Many surveys of houscholds in developed countries involve direct sampling ol
households from lists in a single stage. In developing countrics as well, there are examples of household surveys using
single stage designs at least in selccted domains such as major urban centres. Though the [ollowing example is based
on surveys of economic establishments rather than of houscholds, it provides a good illustration of the use of
replicated sampling,

The system of economic surveys in Cyprus consists of a set of annual surveys each covering a major sector ol the
cconomy (manufacturing, trade, transporl, services, etc). These are supplemented by a monthly survey of employment
covering all the seclors. The survcys are based on a common design. The population of cstablishments is divided
inlo economic sectors, sectors into subscclors with varying degrees of detail, and within cach subsector a single stage
sample of establishments is selected with PPS (probability proportional to the size of employment) systematically from
cstablishments ordered by size of employmenl. A wide range of estimalcs is required from the survey separatcly for
a number of domains (economic scctors or subsectors), covering many variables such as annual sales, gross output,
direct costs, valuc added, investment and employment - both as aggregates and as averages per establishment and per
worker. In addition, monthly levels and trends in employment by sector are produced using a complex composite
estimation procedure applied to the cmployment survey (Cyprus, 1990).

To compute variances, the sample of establishments within cach domain was divided systematically into a number of
replications. (A domain usually referred (o a subsector at the 2 digit level of 1SCO.) Replications could be formed
simply and flexibly because of the systematic nature of the sample within each domain. The main issue requiring
consideration was the choice of the appropriate number of replications in each domain. An adequale member of
replications per domain and an adequate number of units per domain are both important requirements. The domains
varied considerably in sample size (mostly in the range of 50-400 establishments), and the following simple rule was
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used Lo determine the number of replications in a uniform way: the number of replications and the number of unils
per replication both varied in proportion 1o the squarc-root of sample size in the domain. Thus in a domain with
100 sample establishments, 10 replications cach with 10 establishments were created; in a domain with 300 sample
establishments, around 17 replications each with 17 or so establishments wcre created. (Some results on coefficients
of variation computed by using the indepcndent replication approach are shown in Illustration 6.E.(2); these were
obtained from past annual surveys for the purpose of sample redesign for fulure surveys.)

3.3 JACKKNIFE REPEATED REPLICATION (JRR)

33.1 INTRODUCTION

The Jackknife Repeatcd Replication (J_RR) method is one of the ‘resampling methods’ for compulting sampling errors
for complex designs and statistics in which the replications Lo be compared are generated through repeated resampling
of the same parent sample. Each replication is designed Lo reflect the full complexily of the parent sample. However
the replications in themselves are not independent bul overlap, as their construction involves repeated resampling
from the same parent samplc in a specified manner. This general approach is useful and necessary when the
independent replications are not available, or il their number is 100 small to yicld uselul estimatcs of sampling error
using the simple replicated approach of Scction 3.2. With repealed resampling Lhe variance estimates are made more
stable through averaging over many subsamples. However, since the replications generalted are not independcnt, the
simple expression (3.1) cannot bc used 10O estimate the variance of a statistic based on the [ull sample, irrespective
ol whether the statistic of interest is linear or morc complex. Also, special procedures are required in construcling
the replications so as to control the bias in the variancc estimaltes resulting from the lack of independence of the
replications. Various resampling procedures arc possible depending upon the manner in which the replications are
generated from the parent sample and the corresponding variance estimation formulae evoked.

The JRR method involves the following basic steps:
[1]  the selection of a number of o_vcrlapping subsamples from the parent samplc;
[2] derivation of the needed estimates of the population from the subsamples;

[3] and an estimation of the variance of the parent sample estimator from the variability among the
subsample estimates.

In the basic model of the JRR method, replications are generally formed by randomly eliminating onc sample PSU
from a particular stratum at a time, and duplicating or rewcighting the retained PSUs in the stratum concerned to
appropriately compensate for the eliminated unil. Hence with a primary selections in the full sample, the same
number of unique replications are defined, each corresponding Lo a particular unit i in stratum h having been
eliminated, and the other unils in the stratum given appropriately increased weights so that the estimate y,,,, [rom
the replication has the same expectcd value as the estimate y from the full sample. (However the two generally do
not have identical valucs in any particular sainple.) This is because cach unit is eliminated or rctained (with
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appropriately increased weight) in the construction of the replications exactly the same number of times. For the same
reason, the average of the replicated estimales involving eliminations from the same stratum

Yo = E; Yonn 121

and the average of all a replications

y = Eh‘yw)/a; where a = Ehah

both actually (not mercly in ¢xpectation) equal the tolal sample estimate in the linear case, and approximalely so in
the non-lincar case. (In the above a, is the number of sample PSUs in stratum h, and also the number of
corresponding replications generated.)

With unils eliminated from one stratum al a time in the construction of the replications, each replication provides
a mcasure of only the variance contributed by the particular unit and stratum involved. These estimales are then
aggregated over Lhe replications to oblain the total variance.

The basic modcl can be generalised in various ways. For example, replications may be constructed by eliminaling
several PSUs at a time from a particular stratum. [t is also possible to think of suilable jackknife procedures which
leave out parts of more than one stratum at a time. The BRR approach discussed in Section 3.4, in which replications
are formed by climinating one half of cvery stratum in the sample al a time thus becomes a limiling case of the
generalised JRR approach. Tukey (1968) for example sces possible advantages in the intermediate approach in which
JRR replications are formed by climinating anything less than half the sample at a time (Scction 3.3.4).

The following description, however, is largely in terms of the usual JRR application of dealing with one unit in onc
stratum at a time.
3.3.2 DESCRIPTION OF THE PROCEDURE

The Method in the Linear Case

Consider a replication formed by dropping a particular PSU i in stratum h and appropriately increasing the weight
of the rcmaining (a,-1) PSUs in that stratum to compensate for the missing PSU. The estimate tor a simple aggregate
(total) for this replication is

a,
Yy = o - yl.) + _1-0';._)".,')
h (3.3)
N S
B —1'0“ a)
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The last term in (3.3) vanishes by definition if an average is taken over all i in the stratum. This means that in the
linear case, and with cach PSU dropped only once, the average of estimates y,,, over the stratum

Yoy = 2 Yol (34

and the average over all a = Za, replications

)7 - Eh Eiy(hi) (3_5)
E;. o

both equal to total y estimated for the full samplec. It also follows from the above definitions that the standard
expression for variance of the total y estimated from the full sample

a,

var(y) = 3, [(1-f).

T 0u-22Y ] (36)
ay

ah—l'

can be written in any of the following three forms (which are cquivalent in view of the identity of (3.4), (3.5), and
the full sample estimatce y in the lincar case):

-1
var ) = Y, [(l—f,,).a’;—.E, Oy~ Ye" ] (3.7
A

-1

var0) = ¥, (0=, 09 ] (38)
h

war) = ¥, [0-£) 22, 0y 9 ] (39)

Extension to the Non-linear Case

In the JRR method the standard variance form (3.6) is replaccd by one of the three expressions (3.7)-(3.9); usually
the last of the threc is used, as it is more conservaltive. In the lincar casc this replacement makes no difference; but
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then there is no point in introducing the latter more complicated expressions. The point of introducing them is that
they provide good approximations for the variance of more complex, non-linear statistics as well. This is because,

being based on nearly the [ull sample, estimates like y;,, ¥, and even more so their overall average y are expected

to be close to the full-sample estimate y for a complex statistic. Hence their variance, expressed by any of the last
three forms, provides a measure of variance of y as well. This is not true of the standard simpler form (3.6). In the
non-linear case, expressions (3.7)-(3.9) are rewritten by replacing y (which we use to denote the [ull-sample estimate
in the linear casc) everywhere by y (which denotes the same in the non-linear case).

Paircd Seleclions

The case of exactly two sample PSUs per stratum (a,=2) is a common and convenient one. In application, this
amounts (0 eliminating one PSU and duplicating the other in a stratum at a time. To write the formulae for this
special casc simply, a slightly diffcrent notation is more convenient: y', is uscd to denote the estimatc formed by
dropping a particular PSU from stratum h, and y",, to denote its complement formed by dropping the other PSU
in the. stratum. With this notation we can write the above as

var, ) = 13, [(1-£).0m Yo" | (3.10)

or, by replacing the average of the (wo replications by their near-equivalent (otal samplc estimale y, as

vari(f)

Eh [(l_f).)-()’(lh)‘f)z 1 (3.11)

or its complement

var;'(f)

Y, [A-f).0p-»" ] (3.12y

With paired selection and using either of the above equivalent forms, it is possible to reduce (o haif) the number
of replications needed by only considering one primary selection at random from each stratum and disregarding its
complement. This can result in considerable saving in computational work, and may not resuit in much loss in
precision in large samples with many strala.

Other forms are also possible, such as from (3.9):

var,9) = %.):,,(l—f,.).[(v(’,.,—y)2 + @(’,’,)—y-f] ' (3.13)

which turns out to be simply the average of (3.11) and (3.12) and hence requires twice as many replicated estimates
as either of the two.
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333 DEFINING THE SAMPLE STRUCTURE

The basic requirement for the JRR method is that the (full) sample be selected by dividing the survey population into
a number of strata, from each of which two or more primary selections are obtained indepcndently at random. In
practical application of the method, various steps arc often required to redefinc or simplify the given sample structure
Lo conform with the required model, and also for computational convenience and elficicncy. This is the case especially
when the number of primary units and strata involved is large, and the PS’s tend to be small or variable in size. The
steps, describcd more [ully in Section 4.4, include: (i) random grouping of PS’s within sirata 10 [orm more suitable
computing units; (ii) combining of units across strata; (iii) collapsing (disregarding) some stratification to ensure that
at least two effective primary units arc available from cach computing stratum; (iv) treating adjacent units in a
systematic sample as independent sclections within the strala so defined; and (v) assuming that the primary selections
within cach stratum are independent.

As mentioncd above, the basic idea of the JRR is to drop a random set of PS’s from a stratum at a time. This means
that in the computational [ormulac described, it is such ‘drop-out groups' rather than individual PS’s which are
relevant. Of course, often such ‘groups’ consist of single PS’s; ncvertheless the conceptual distinction remains, and
it is more convenient to think of the former as the cflcctive computing units. We can thercfore add to the above list
of sample redcfinition the following: (vi) random grouping of units further if necessary, to define ‘drop oul’ groups
which serve as the effective computing units, so that a replication is formed by dropping onc such unit from a
particular stratum; and (vii) other possible variations in thc method to reduce the number of replications involved.
These include for instance: considering only a subset of replicatcs for dropping, always rctaining the others; dropping
replicates from several strata at the same time; or permitting some units to be dropped out in more than one
replication. However the most common (and arguably thc most efficient) scheme is when sample PSUs are dropped
one at a time and each unit is dropped cxactly once.

334 WIDER USES OF THE JACKKNIFE APPROACH
In conclusion it is worth quoting the following remarks by Tukey (1968):

"One important point about the use of the jackknife - in which, rather than Icaving out half of the available
data, onc leaves out smaller pieces in turn until all has been left out once - is its ability to be used at two or
more levels. If onc had used the jackknife method rather than the half-samplc method [the reference is to the
BRR method discussed in the next section] to obtain the DEFF or DEFT values [design effect; sce Chapter 5],
as in Kish and Frankel situation [see references at the end of this document], one could go ahead to estimate
the stability of these results, or of their differences, or their ratios. By doing this we would have a better
understanding of what these resuits, as well as many others, really mean.

"The technique is simple in principle, but often not easily grasped without delailed exposition. The basic idca
in dcaling with a DEFT, [or example, would be to lay aside one piece of the data and then calculate the DEFT
by jackknifling the remainder. This jackknifing would involve lcaving out additional pieces of the data, one at
a time, and in turn. Once this has becn done for one first-stage piece, we proceed Lo do all this over again
and again, laying aside cach piece of the data at Lhe first siage, we are ready to jackknife the DEFTs thus
obtained and thus estimate their variability...It seems 10 me that there will, in the (wo-psu-per-stralum situation
faced by Kish and Frankel, prove to be real advanlages to a suitable jackknife procedure - one that leaves out
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more than one PSU, but less than half of all PSUs. I we have five strata, each with two PSUs, the half-sample
method requires leaving out one PSU in each stratum, which can be done in 32 ways. A probably sensible
jackkniflc approach would involve Icaving out one PSU in cach of, say, two of the five strata. Therc are 40
possible ways to do this. The gain will come [rom leaving oul enough, bul noticeably less than half of the
data...

"A simple example on which (o compare "jackknifing" and "halving" is the problem of data gathered in several
blocks wilh three values, equally spaced in time, oblained in cach block. This sort of data arises naturally in
many agricultural problems (including time ol planting and time of harvesting). Yates (private communication)
suggested that, where the number of blocks was a power of two, we treat such situations by halving the data
and comparing the halves, repealing this in an interesting and ingenious way according 10 a fractional factorial
pattern, thus obtaining the full number of dcgrees of [reedom for the variability cstimatc.

"Analysis of this problem shows thal the bias due to halving - both in the location of the optimum data and
in the cstimate of the variance of this optimum data - is noticeably larger for halving than for ‘leaving oul onc’
jackknifing, which also provides the full number of degrees of freedom [or a variance estimate. 1 believe we
can expect 1o find this phenomenon rather general. Accordingly, I believe that ‘lcave out a few' techniques
will do even better than halving in the two-psu-per-stratum situation.”

3.4 BALANCED REPEATED REPLICATION (BRR)

In the Balanced Repcated Replication method, a replication is formed {rom Lhe full sample by randomly selecting
some and dropping the remaining units [rom every stratum. (Typically, a replication is composcd of a random half
of every stratum.) Conscquently any replication when compared with the [ull sample (or with the average of all
replications considered), provides a measure of the variance of the cntire sample. These measures arc then averaged
over the whole set of replications o obtain more stable estimales.

The BRR method is technically more complex than the JRR; consequently, the discussion in this scction needs Lo
be more elaborate. Technical complexily can in fact be a serious drawback of the method when compared with JRR,
though the two mcthods have been found to perform cqually well in dealing with complex statistics under complex
designs.

341 BASIC APPROACH OF THE BRR METHOD

The Linear Case

To illustrate the basic approach we begin by assuming the following modcl:

[1]  The population is divided into a number of strata (h = 1 to H) and {rom each stratum exactly (wo
independent primary selections are oblained.
[2]  The objective is to estimate variance of a linear slatistic such as a population total.
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Assumption [1] refers to the structure of the tolal sample, which is then divided into a number of overlapping
replications as described below. This assumption is not an unrealistic one for the BRR method, because the procedure
is most readily applied to designs with 2 PSUs per stratum. Though it can be extended to 3 or more (but a constant
number of) primary selections per stratum, it remains a fact that the method is not so flexible in dealing with diverse
designs. However this limitation is not as restrictive as it may appear. (i) Firstly, many surveys do use 2 PSUs per
stratum designs; or more commonly, such a design is approximated by applying the collapsed stratum technique to
systematic samples or to designs with fewer than 2 PSUs per stratum. (ii) Secondly, through random grouping of
units or combining across strata, the actual design can be redefined to fit the 2 PSUs per stratum design with good
approximation (see Section 4.4 for further discussion of these issues). (iii) Thirdly, of course there is no restriction
on the manner in which the sample is selected within primary units.

Assumption [2] is nol realistic because the point of using a method like the BRR is 1o deal with complex, non-linear
statistics. However, as in the case of th¢ JRR method, the linear case provides a starting point for description of the
mcthod. Moreover, approximations for Lhe non-linear case are obtained by analogies Lo the results for the linear case.

Suppose that a sample with two primary selections from cach of H strala is divided into two parls as follows. One
of the 2 PS’s from each stratum is assigned at random to "Subsample 1", and the other PS 10 its complement
"Subsample 2". Lcty,’ be the appropriately weighted estimate of the stralum total from the unit from stratum h in
Subsample 1, and y," be the estimate from the unit in Subsample 2. Their average y, = (y,'+Y.")/2 also cstimates
the stratum total. On the lines of (2.8), the ordinary estimator of variance of the full sample cstimate

EDIRAEE S I RSH (314)
is given by
wr) = ¥, 010" = X, 0800 = 15, 010 (.19

(Note that in the present notation, a quantity like y,’ is sdgiled 1o be twice the size of a ‘half-sample estimate’ like y,,
used in [llustration 2A.)

Alternauvely we can consider the simple replicaled estimator of variance following (2.2). The two samples form
indcpendent replications, their respeclive estimates of the population total being

Y=Y, Y =X,

and their averagc
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- 1 1
B U RS IR

is identical (0 y in (3.14) for the linear case being considered. Following (2.2), the simple replicated variance of v is

varG), = O/-97 = 0" = 0" It

Estimalor (3.15) is based on H degrees of freedom, but (3.16) only on one degree of [reedom (hence the subscript
‘1"). The latter therefore is much less precise than the former; however it is no more biased as can be seen by
rewriting (3.16) as follows:

var(y), = —1- E,, 0’:.‘}’:.,) = lE,, 0';‘)’1/./)2 + lE 0’;‘}’:./)0’;‘}’2/)
4 4 4 het

The second lerm on the right vanishes in expectation, because the units are allocated to one or the other subsample
independenlly across strata. This leaves the first lerm which is identical 1o (3.15).

The reason [or considering a replicated estimator of the form of (3.16) is that, unlike the ordinary estimalor (3.15),
it can be readily extended to non-linear statistics y as will be explained below. 1ts major drawback is the lack of

precision. To improve stability, the operation of creating "half-sample replications’ can be repeatcd many (T) times
and average taken, giving the averaged estimator

1 1 / ]
¥r = TV = 5p, Ot ¥)

and its variance

var(y), = 4—11"2' o/-y'y (3.17)

where subscript ( refers to a particular half sample replication and its complement. It can be shown thal if the
average is laken over all possible half samples, (3.17) is as precise as (3.15). However, the number of possible halt
samples is 100 large (= 2'"! distinct half samples and as many complements) for the above 10 be useful in practicc.
Instead, a much smaller "balanced"” set of replications is sought which can achieve the precision of (3.15). To explain
the idea of balancing (McCarthy, 1966), it is illuminating (o express the totals (y,', y,") estimaled from a particular
replication (and its complement) in terms of the quantities (y,’, y,") corresponding to arbitrarily defined but fixed
Subsamples 1 and 2 referred to earlier. It can be easily verified (hat the relationship is

01y = X, du0n)

where d, is an index defined such that:
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3 Comparison Among Sample Replications

d,, +1 if the unit appearing in replication ( in stratum h is from Subsample 1, and
d, = -1 if the unit is from Subsample 2.

The above gives (noting that d,,* = 1 in all cases)

0y = X, 000 + X [0h vy, 4,0
heok

Substituting into (3.17) and reversing the order of summations over t and h gives

var(y); = %.}:,, Oh-ym)? + }T§ [0 r0IIE, €, 5d, )]

The sccond term on the right represents additional variability in comparison with the ordinary estimator (3.15). For
all possible replications, this term vanishes for lincar estimates (though only approximately for non-linear estimalcs,
for which the method is needed and used). The idea of balancing is (0 choose a much smaller set which has the
property that for every fixed pair of strata (h,k) the quantity

Y, d,d, =0 (3.18)
this making the additional variability disappear.

Another desirable property of the set is that the average yr (eq. 3.17) is the same as Lhe (otal y estimated from the
full sample. This is ensured if in each stratum, the two units appear in the same number of replications, which
requires that for every stralum h :

Y,d, =0 (3.19)

Extension to Non-linear Statistics

On the assumption that the distribution of the average y; of the replications is close to the distribution of the

non-linear estimator y based on the full sample, cquation (3.17) provides a good estimate of var(y) as well. This

applics irrespective of the complexity of the estimator. Hence the method is directly extended from simple linear
statistics (0 non-linear statistics of any complexity, provided that the assumptions noted above remain valid. Several
empirical investigations confirm this validity. [t is also assumed that the method of construcling balanced replications
(as described in Illustration 3B below) can be carried over from the linear case, for which it is established, to the
non-linear case. Since in the non-linear case the replicated estimates y, or their average y; are not identical
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3.4 Balanced Repeated Replication

10 y based on the full sample, the different forms shown in (3.16) are also not identical to each other. This gives

the following four alternative cstimators for the variance of y :

1
- 7.)_‘“(y,’ - 9

a1 " 2
Vl = 7.2’0' - y-)

" 1

v, = '2%,2,[0: - )7)2 + (y; )7)2] = %(V{ + V])

1 / i
V; = 4_T'E'(y’ - yr)z

Of the above four forms,the last one (v,) is the same as (3.17). Note that while v, and v," are cach based on T
replications, v, and v, involve T complementing pairs (ie 2T replications), and hence considerably more computational
work. The forms v;” and v," are simply complements of each other, and the choice among them is arbitrary. Form v,,
being an average ol the two, can be somewhat more precise but involves twice as many replicated estimates; it may
be preferred if the computational work is no problem. Being a more conservative estimator, v, may also be preferred
over v,. In situations where the BRR method is appropriate, the difference between the last two should be small in

any case.

3.42 APPLICATION IN PRACTICE

The BRR method is most conveniently applied to designs with two primary selections per stratum; extension to more
than 2 (but a constant number) of PS’s per stratum is possible though at the cost of further increase in complexity
of the procedure for constructing the ‘balanced sct’ as described in lllustration 3B below. This makes the method
somewhat restrictive. In any event, appropriate redelinition ol the sample structure may be necessary [ollowing the
various approaches described in Chapter 4.

As cxplained in lllustration 3B, the numbcer of replications required is between (H+1) and (H+4), where H is the
number of strata, corresponding to a = 2H primary sclections with the paired selection model. Consequently, the
number of replications required is roughly hall that required in the basic model for the JRR method (which requires
as many replications as the numbecr of primary seleclions). Also, the size of each replication in BRR is roughly hall
as large as that in JRR. For both thesc reasons, the computational work involved in the former is generally less than
the latter, though in either of the two cases il usually exceeds hat involved in the linearisation method.

In any case, in samples with many PSUs and strata, the computational costs of the BRR may become excessive. One
way (0 reduce the cost is to appropriaiely combinc units and strala (0 oblain fewer computing units and strata as

(¥,
wn



3 Comparison Among Sample Replications

discussed in Chapter 4. Another procedure is to reduce the number of replications required for a given number of
strata by seeking only a partially balanced design. McCarthy (1966) describes a method of partial balancing in which
the full set of strata is divided into a number of equal groups. A balanced set of part-replications is created for only
one group, and cach replication is completed for the whole sample by simply repeating the pattern of that gfoup in

all the other groups of strata. McCarthy also notcs that some other authors found the same efficiency by selecting
a random set from the full set of orthogonally balanced replications.

TABLE 3B.(1). Balanced set of 8 rcplications.
(Source: Kish and Frankel, 1970)

ORTHOGONAL BALANCE OF 8 REPETITIONS FOR 7 STRATA"

k
k
1 2 3 4 5 i 7
1 + 4 + - + - -
2 - T + + - + -
3 - - + + + - T
4 T - - + + + -
-5 — + - - + - +
6 + .- + - - + +
7 + + - + - - +
8 — — — - — — -~
» The Brat repetition ia marked +++—+——in secord with the scheme in 128, p. 323) for creating orthog-
onal repetitiona. It is an arbitrary representulion of a rurulom firat choice from the pair of replicates in such stra-
tuin; — — — + — + + would represent the associnted complenent replicalion. The repetitions from 2 to (k—1) are

designated from the frat row by moving to the right one place circularly in Colunma 1 Lo (k —1). The kth repetition
isall —. Note that Uic number of + and — replicates used are 4 for ench stratum; alao that the number of changes
is 4 [rom any repetition to any other.

The aituation is similar when & 13 any iutegral multiple of 4 and the number of strata is H =k—1. Ii H =k -2
or 1] =k —3, orthogonal bulunce way bu obtained by omitting any 1 or 2 colurnns. Il H =k, orthogonal balance may
be obtained by writing a whole coluinn of — for the last atralum, using the same replicate from it for every repeti-
tion, but this sacrifices the symmetrical use of sll replicates. :
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3.4 Balanced Repeated Replication

ILLUSTRATION 3B CONSTRUCTING A BALANCED SET OF REPLICATIONS

Plackett and Burman (1946) provide a mcthod of constructing ‘orthogonal’ [T x T] matrices with entries
+1 or -1 and T any multiple of 4, which satisfy equations (3.18) and (3.19) when summed over rows t. Such a matrix
can be used to define a balanced set of half-samples as follows. To start with, in each stratum one unit is assigned
at random 10 Subsample 1, and the other unit to Subsample 2. Let us identily each unit in the first set with a ‘47,
and in the second set with a *-". The orthogonal matrix consists of a ‘+’ or *-' in each ccll according to a cerlain
pattern. The T rows of the matrix represent the set of T replications (half-samples), and any subset of H (out of T)
columns rcpresents the strata. A row defines the composition of a replication; i€ it specifies the particular unit
(a *+’ or a *-’) taken from cach stratum to form the replication. The matrix has the property that cquation (3.18) can
be satisfied if H<T, but (3.19) only if H<T. Hence T can be taken as the next multiple of 4 after H; that is, the
number of replications required for a sample with H strata is in the range T = (H+1) to (H+4).

Examplcs
Tables 3B.(1) o (3) provide examples of ‘balanced’ sets for T = 8, 16 and 24 replications respectively. The first

cxample is taken from Kish and Frankel (1970). The rows definc 8 half-sample replications for a sample with 7 (or
fewer) strata; strata arc identificd by columns. It is assumed that each stratum contains 2 primary seleclions, one
assigned a "+’ and the other a ‘-’ at random. Replication No. 1 for cxample is formed according to the [irst row, ic
by 1aking units designated as ‘+’ in strata 1, 2, and 3 and 5; and Laking units designated as ‘-’ in the other strata.
Similarly Replication No. 8 takes the units designaied as ‘' in each stralum. It can be seen that in any column
(stratum) the number of + and - signs is ¢qual, meaning that cach of the 2 units appears in the same number ol
replications. This satisfics (3.19). Also if any (wo columns are 1aken, the number of rows in which they have the same
sign (giving d ,.d,, = 1) is equal to the number of rows in which the two columns have diffcrent signs (giving d,,.d,,
= -1). This satisfies (3.18). Note that if thcre are fewer than 7 strata, the number of columns not required can be
dropped arbitrarily. Similar remarks apply to the other two tables, which deal with somewhat larger samples. Tle
footnote in Table 3B.(1) describes the symmetry of the patlern.

TABLE 3B.(2). Balanced set of 16 replications.
(Source: Plackett and Burman, 1946)

B e e A

The complete design is genorated by taking this as the first column (or row), shifting it
cyclically one place fourteen times and adding a final row of minua signs, thus:

ot b+t +
A ———t—— b —+—+ +
e e e S
R s s sk s
R e e .1
bttt ———t——t+—
—t—tttt-——+-——++
t—t -ttt t———t-—+
- — ettt ——— - —
—t ek —t—ttt - —— -
e o e e i S N
=t~ Ft—— -
R e e S S
kS e A i
———t— =+t -t —+++t
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(Source: McCarthy, 1966)

TABLE 3B.(3). Balanced set of 24 replications.

Stratum

0
1

Half -

Sample

+ +

2
3
4
5

+ + +

+ + + +

+ + + + +

+ + + + +

+ + +

10
11
12

13

+ + + + + +

+ +

14

+ + + + + + + + + +

15
16
17
18
19
20
21
22
23

+ + + + +

+

+ +

+ + + + +

+

+ +

+ + + + +

+

+ +

+ + + + +

+

+ +

+

+ + + + +

+ +

+ + + + H

+

+ +

+ + + +

+ + + +

+ +

24
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3.4 Balanced Repealed Replication

specification of Balanced Scts

Wolter (1985) provides a complete list of T X T orthogonal matrices for T as a multiple of 4 up (0 100. The reader may
consult that reference, if available. Howcver (0 make this Technical Study as sell-contained as possible, below we specily
the sct (except for T = 92 and 100 for brevily) in an alternative and much more concise form drawn [rom the original paper
of Plackett and Burman (1946). It may be pointcd oul that matriccs meeting the requirements (3.18) and (3.19) are not
unique. For example the ‘+’ and ‘-’ signs can be interchanged; or rows and columns can be rearranged in any arbitrary way,
or for H<T, any arbitrary subsct of columns not required can be dropped. In Table 3B.(4), the matrices are specilicd in
several forms:

[1]  The most common presentation gives a single sct of (T-1) values. (In the table, N has becn used by the original
authors in placc of T here.) The full matrix is constructed from the given pattern as follows. Assume that the
given pattern forms the top (T-1) entries of the first column of the matrix. Each next column up to (T-1) is
formed by shifting each entry in the preceding column one row down, in a circular fashion, the (T-I)th row
entry moving to the top. The final row and final column of minus signs arc added.

[2] Some matrices are formed by doubling others. This follows from the property that if | T] is a matrix of the
required type, then thal is also the case for the following matrix of order 2T where [-T] means a matrix formed

from |T] with all signs reversed.

T T
T -
[3] Inafew cases (T = 28, 52 and 76; also 100 not shown here) the cyclic permutation is applied 1o blocks of cells

rather than to individual cells as in the case of [1].

[4]  Regarding the two cases not shown (T = 92 and 100) the pattern for the next higher T value can be used. One
may f[or instance use T = 96 in a case actually requiring only T = 92; and for 100 usec 104 obtained by

doubling the pattern [or 52 according Lo |2}
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TABLE 3B.(4). Constructing balanced scts.

T
N=B +++-4--
Nal2 ++-4+4+---+-
N=16 ++++---+4+--+---
N=20. ++--d4t4tr-tt—=ht-
N=24, + ++++ -+ -+ -t r - - +—= -~
¥ =28 First nine rows |—
r—L--+———!—+———+——+++—+—+4-—
Ll il B Sl Tl I AR R R IR R R
—+1r+o----‘o-—-+—-+-+-+—+—-+-
i B il I S I O O
R I B I e i T Bk Tt 2 A
——--++++¢’-+-+---+--+++—+—++
R e A R I SRR R A S I
Tt - - — - -t - - M-+ - -+ 4
Frd = - = bt e o m o m e s m bk
[ E
N=32 ---cd ct-dt +-4+=- =4 ++ ++—-—-= +-4-- 4+
N=36 (Obtainedbhytnal) — + - 4+ + + - - -4 + 4+ 4+ += Fbtbo- +==== +=4=F ==+ =
N =40. Double design for N = 20.
N=dd +r--4 -t +h -+ ++t—= —+ -4+t b —fm—— th-t - 4 -
N=dB. +++++ -4 ++L Lo d — b — b o md fod b ——mh — A me = m o —— ==
N =52, N
Fr -ttt -t =+t mt T kbbb b —d b mF -t = F—F =t —F =+
First +l-+ - e e - R T L e T LT T JCi S SIS PRI VIR
eleven - e R e il R i B e I B B R e il it 2l it S S
ows  +|- - -4 - - - --- A e I e o Tt S B
-—-+-r+———»—0-'+—+——+-—+-:-++—+--++-+-+-—r—+-—0—’—0b—+—+——+
+|--=--- r———-+++‘,++————'++--+¢r+-—|-—1—+r+——+-r;—-——++++++
il e e B R A I A R 3 i I IR it SN S A i it
b= - === - S D A Sl il S g b g sl L iR dh el A 2
Rl IR I R I A T 4 kIR BRI R B B . T ek I o T e
t-—-—-——--—— i A e e A T T e i S A e At )
il L i i e e I I I I S I e T e
N =66. Double deaign for N =28. [
N=60. ++-+Ft+ +=-Ft-b —=1-= ~F++-+t +t++4+=-—=- ++r++ —=—-~ bk == = ===
++ -4+ -+ -+ -+~
N = 64. Double design for N =32.
N=68. ++--+4+ —-+--+ +---+ 4+ F-+ —++-4+ +4+--4 —--+- +++-4+ +----
I R i T B ST S S
N=T72. +++++ ++-++ +-+-= ++-1+ +---4 t~+ -+ + -+ = —+++—- - &=
-ttt A ———F ——Hh k- == - === -
N=T6 4+ +- 4+ - 4= 4= += +- -+ -+t +-+t=-+=-+-1-4+-+-+-+-+- +-
+|—+|- =+ + -—f‘-—————-‘—|+'r++|||'——"+|++++ + +
—r |- +]|+ - _++__+'+|'+|"'l+'+ R R E A
R N i T S I I i I e e e  dhali S
1 1 T T
R e e e R o e b b A el R I
+-+—+—-+—+-+—+|+—l-—+ +—|-—|—'-—+ +—;—+
The first three rows are given; toobtain the complete design the square blocks are permuted
cyclically. The first column, apart from the cornor element, has alternate signs.
N=B0. +++-+ +—=—++ ++-~+—- -+~-++ +++4+=- + +--- —F+—-- =4 -—+= +~— -+
++ -+ +Ht - Fomm - - - k== —- - -
N=B. ++-++ - -+-+ +++—-=- -++-- —+-+- +++++ +b-+- -F++- ++--+
e mtd md - —= - - ——4 -} -+ +-—++ R L R
N =88. Double design for N = 44.
N =92, This design has pot yet been obtained.
N =08. Double deaign for N = 48.




COMPUTING SAMPLING ERRORS IN PRACTICE

4.1 PREREQUISITE: MEASURABILITY

The most basic requirement for generating information on sampling errors is that the survey design and procedures
adopted yield a measurable sample. ‘Measurable sample’ and ‘measurability’ are not precise or formal concepts, bul
are used Lo identify a set of practical criteria which can be useful in distinguishing from others those sample designs
and procedures "which allow the computation, from the sample 1sclf, of valid estimates or approximations of 1ls
sampling variability" (Kish 1965, Scction 1.6; also see discussion in the Survey Statistician Nos. 13-15, 1985-86; and

Kish 1987, Section 7.1). :

(1]

Firstly, for mecasurability it is highly dcsirable that the sample be a probability sample, ie be based on
selection procedures which assign known and non-zero probabilities to all elements in the population.
Certainly this precludes judgement or purposive samples, non-probability selections for experimental design,
arbitrary seleclions of single sites for ‘case studics’, and most quota samples. However concerning the last,
useful indications of the level ol uncertainly duc (o sampling variabilily can sometimes be produced from
quota samples of sufficiently large size with many conlrol categorics and only small quotas taken from any
one calegory. Examples are good opinion or market research surveys which routinely include useful
indicators of margins of uncertainty due 1o sampling. In normal survey praclice one also encounters samples
which are not probability samples in the strict sense, in that only relative rather than actual selection

probabilities arc known. In such samples il is possible to produce valid eslimaltes of proportions, means and
ratios, elc, as well as estimates of their varianccs; bul this may not be the case concerning cstimates of
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2]

(3]

[4]

population aggregales withoul the importation of external information. In this a sample may be measurable
with respecl 10 certain statistics but not with respect (0 others. Hence what is required for measurability
is: (i) preferably, that the design 1s such that the actual probabilities, or at least the conditional probabilities
of inclusion in the sample given the initial sample size, are posilive and known; or (ii) as useful extension
in some cases, that any non-random procedures involved are controlled and the population to which they
are applied can be considered rcasonably randomised. The second conditions cannot be usually ensured in
national houschold surveys, and it is necessary 10 rely primarily on (i) for measurability.

The second requirement is that of having two or more inlernal replications in the sample for cach domain
or stratum for which scparale estimates of variance are requircd. Estimatces of sampling variance (and of
other components of variable error) can be produced from the sample results themsclves only from
comparisons betwecen estimates from parts of the sample assumed independent. Most simply this mcans that
two or morc¢ indcpendent selections must be available from each stratum. Most practical designs do not
meel this requirement cxactly, but in many situations it is approximated closcly enough for valid estimates
of variance 10 be produced. Examples of designs which can be considered measurable in this sense arc many
syslematic samplcs, samples with single selections per stratum, ‘controlled selection’ in which sampling
across strala is linked in some manner, and many situations in which the multiple selections within strata
arc not fully indcpendent. Several of these features are introduced into practical designs for efficiency and/or
convenience.

In practice it is necessary to go further then the above requirement of a minimum of two replications. It
is necessary to produce valid estimates of the statistics and their standard errors. By ‘valid’ we mean thal
the variance estimator generated is sufficiently accurate to be useful, i¢ is not subjcct 1o unacceptably large
variances and bias. This is also a practical criterion: the required accuracy depends on the use 1o be made
of the information on sampling crrors. Clearly, this information is sccondary Lo the main subslantive
findings of the survey, and [or many purposes il is sufflicienl to oblain only approximale values of the
sampling errors. Furthermore, sampling crrors represent just one component of the tolal error and nol in
all, c_ircumslances the most important onc. Nevertheless, in large-scale national houschold surveys,
reasonably accurate estimates of sampling errors for many variables and subclasscs arc essential for proper
interprelation of the results and for evaluation and improvement of sample design.

Al a minimum, 'validity’ requires that in computing variances the actual sample design and estimation
procedures are taken into account. Furthermore, the sample should be large enough in size (in terms
of primary selections, replications, or other relevanlt computing units) (o yicld reasonably stable
estimates of variance. In the sample design it is also necessary 10 avoid ¢xtreme varialions in unit sizes
and selection probabilitics.

Fourthly, the procedures for cstimaling each statistic ol inlercst and its sampling crror nced 0 be
formulated in accordance with the sample design. In most cascs this is nol a major problem because several
good general variance cstimation procedures applicable to complex statistics in complex designs have been
developed as described in Chaplers 2 and 3. Nevertheless there can be situations for which valid procedurcs
cannot be formulated on the basis of existing methodology. A requirement of good survey practice is (0
avoid geuting into such situations.



4.2 Selecting Stalistics for Vanance Compulation in Mullti-subject Surveys

[5] Finally, it is necessary 10 have the means o implement appropriale procedures of variance estimation in
practice. It is necessary L0 have suilable compuler sofiware and full documentation of the structure of the
sample for this purpose. It is highly recommended that sample weights, PSU and stratum identifiers, and
other essential information on the sample structure be included as an integral part of the compulerised
micro-level dala files resulting from thc survey. Failure o ensurc such information can render
‘unmecasurable’ samples which are measurable in other respects. There are many examples where the survey
documentation does not mecl this basic requirement, cven in developed countries, as for instance
Kish ct al (1976) found in thcir aticmpts 10 compule sampling crrors from archived survey data in the
Uniled States. Kish notes that "even today variance compulations are not feasible for most multistage
probabilily samples, because Lthe needed identification of strala and primary sclection number are lacking
from computer tapes” (Survey Statistician, No 13). The author also cites the positive example of the World
Ferlility Survey in developing countries in contrast 10 much survey practice elscwhere: "All the WFS
samples from less developed countries have and will have measurability: their sampling crrors can and arc
being computed. But none of the parallel fertility surveys from the developed countrics of Europe have yet
computed sampling crrors, and perhaps cannot do so now." (Verma et al 1980, discussion).

4.2 SELECTING STATISTICS FOR VARIANCE COMPUTATION IN
MULTISUBJECT SURVEYS

4.2.1 GENERAL CONSIDERATIONS

Diversity of Statistics

National houschold surveys are Lypically large-scale and multipurpose, and involve the production of separate
estimales for a very large number of slatistics; the analysis of the results in the form of detailed tabulations, for
instance, can involve thousands or even (ens of thousands of cells. The great multiplicity of estimates arises from
several sources. (1) Most surveys involve the collection of information on a number of substantive variables. In
practice there are hardly ever any true uni-subject surveys, (2) For the same set of variables it is usually required to
compute many diffcrent types of statistics ranging from aggregales and proportions to indices, differences and other
functions of ratios, and more complex mcasurcs of distribution and relationship. (3) Separate estimates in more or
less [ull deltail are often required for geographical and other subnational domains. (4) The greatest increase in Lhe
number of statistics perhaps comes from the need Lo produce separate estimates [or diverse subclasses of Lhe
population. Meaningful analysis of the survey dala usually requircs the classification of the survey units in many
different ways and in great detail. (5) Also, most surveys involve comparison between subgroups. With many
subclasses, the number of subclass diffcrences of interest can become almost unlimited.

Criteria for Choice

In view of the above, it is necessary Lo be selective in the choice of statistics for which 10 compute sampling crrors.
The scope of computations in any particular survey should be decided on the basis of its specilic objectives and

requirements, laking into account practical constrainis.
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Sometimes selective computations covering only the most important statistics of interest are all that is possible or
required. With related surveys or rounds similar in content and design, it is often unnecessary to compute the full
set of sampling errors afresh for every survey.

However, in large-scale national houschold surveys it is generally quite inappropriate 1o confine the computations
1o a few arbitrarily selected staltistics, or to seek unnccessary shori-cuts and crude approximations, or 1o rely solely
on imputing information from other situations, rather than supplementing any cxisting information on sampling errors
with fresh compulations wherc possible. There are several reasons for recommending as extensive a sct as possible
of sampling error computations in each survey. (1) In programmes of houschold surveys, it is very useful 10
accumulate information on sampling errors covering a wide range of stalistics, designs and situations. Such
information can help in the design and analysis of future surveys. (2) Results of individual computations are subject
lo greal variability. Appropriale averaging over many compulations can yield morc stable and useful results. (3) 1t
is nccessary to extrapolate or impute information 10 statistics for which computations have not been made. Such
extrapolation requires identification of the patterns of variation of sampling crror results as discussed in detail in
Chapter 6. The identification of patterns requires many computations covering diverse statistics. (4) The evaluation
and improvement of sample design also requires the identification of such patterns.

In the selection of statistics for sampling error computation, the objective should be to capture the widest possible
range of values encountered in the survey. The reference here is not so much to the actual magnitudes of standard
error, but to certain other parameters or components which may be derived from them and to the gencral patiern
of the results. For instance, one should try 1o cover sialistics with diverse design effects, and a wide range of
coellicients of variation and other measures which are uscful in identifying the gencral pattern of variation of the
results. This point will become clearcr alter discussion of *portable measures’ in Chapler 6.

Dcrived Statistics

Onc of the important objectives of sampling crror computations is to identify the underlying paticrns and
refationships in the results for diverse siatistics. This is greatly helped by computing, in addition 1o actual standard
crrors, a range of more ‘portable’ derived measures such as relative crrors, design cffects, ‘rohs’, coefficicnts of
variation and similar mcasures as explained morc fully in Part II. Also useful for the same purpose is information
on variation in cluster sizes and the manner of distribution of subclasses of different types over samplc areas.

One objective of the derived statistics of the type referred 10 above is to scparate out the cffect of various features
of the sample design on the magnitude of thc sampling error. While analysis of the error into components by
sampling stage may not feasible, it is often possible 10 identify the effects of weighting, cluster sizes, and perhaps also
of some important aspects of the estimation procedure.

422 VARIABLES AND STATISTICS

Substantive Variables

The first priority should be given to covering the widest possible range of substantive variablcs included in the survey.
This is because usually the patiern of sampling errors differs most markedly across substantive variables, compared
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4.2 Selecting Statistics for Variance Computation in Multi-subject Surveys

for example with the variation across subclasses for a given variable. Extrapolations and imputations can ofien be
made more easily across dilferent subclasses or sample bases for a given variable than across different variables. Al
a minimum, sampling errors should be computed for all important means and proportions with the total sample as
the base. The requirement 1o cover most variables in the survey is usually not diflicult 10 mect because, even in
complex multi-subject surveys, the number of important subslantive variables is usually not large: a typical survey may
involve no more than, say, 30-60 such estimates. The great range of statistics encountered arises primarily from the
necd 10 produce separate estimates for numerous subclasses and comparisons.

Often it is possible and useful to group survey variables on the expectation of similarities in the pattern of sampling
error results. The grouping may be based on subslantive consideralions as well as any available information on
sampling errors. The objective is 10 make the groups homogeneous. In selecling the set for sampling error
compultations, it is important to cover as many dilfcrent groups as possible, rather than many variables from only a
few groups.

Types of Staltistics

1t is also uselul to cover various lypes of statistics (such as cstimales of aggregates, proportions, means and other
ratios) because the pattern of sampling error results may differ greatly among them. Of course, for certain types of
slatistics the patlern may be simpler and more casily relatcd Lo other statistics; [or them more seleclive computations
may suffice. It is desirable to cover more thoroughly statistics with more complex patlerns of sampling errors. For
instance, il is usually more useful 10 cover many means and ratios, whilc proportions, espccially those delined in terms
of similar characieristics, can be covered more selectively.

42.3 DOMAINS AND SUBCLASSES

Geogpraphical Domains

In many surveys, statistics similar to the national level are also produced [or a number of urban-rural, regional or
other geographical domains. This has a multiplicative effect on thc number of statistics for which sampling crrors are
required. Hence an important question is whether it is necessary and useful 1o compute the full set of sampling errors
for each domain. The answer 1o this depcnds on the number of domains involved and on how different they are in
terms of the nature of the population covered, survey conditions, sample design, size and nature of the sampling units,
and other factors which affect the magnitude and pattern ol sampling errors. Such differences arc usually marked
between urban and rural areas, thus necessilaling separate comp'ulalions. By conlrast, conditions are often more
similar across different regions of the country, and regions can also be more numerous, cspecially in large countries.
In such circumstances, on¢ may confine the compulations at the regional Ievel 10 only a subsel of the most important
statistics and explore the extent o which errors compuled at the national level may be extrapolated 1o the regional
level. A common difficulty in computing variances at the domain level is thal individual domain samples are based
on small numbers of primary selections, resulting in unstable variance cstimales. This also favours pooling and
averaging of individual computations and (heir extrapolation to other situations in an appropriale manner.
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Subclasses

Much more numecrous are subclasses defined in terms of characteristics of individual units, hence necessitating a high
degree of selcctivily in compuling sampling errors. In selecting subclasses, priority naturally has Lo be given to those
which are thc most important in substantive tabulation and analysis of the survey results. For instance, in
demographic surveys most analyses involve classification of the samples by age, sex and other demographic
characieristics of individuals: sampling errors for subclasses defined in terms of these characleristics are thercfore
important. Similarly, in income and expendilurc surveys, classifications by household size and composition may be
the most important. )

The pattern of results over subclasses depends on the substantive characteristic defining the subclass, how Lhe subclass
is distributed over the population and sample clusters, and the size of the subclass. It is desirable Lo cover subclasses
of different Lypes and sizes. It is more useful 10 cover subclasses defined in terms of different characteristics than 10
cover many calcgories of the same characteristic. Similarly, subclasses may be grouped according 10 the manner in
which they are distributed over sample clusters, and it is desirable to cover some subclasses from each group. In this
conlext it 1s useful to note a classification proposed by Kish et al (1976).

[1]  The basic concept is that of a cross-class, the members (elements) of which are more or less
uniformly distributed across the sample areas and strala. Examples are many subclasses defincd in
terms of individual characteristics of households or persons such as sex and age groups, which tend
Lo be well distributed across the wholc population and hence across sample clusters.

[2] At the opposile cnd, we have geographical or segregated classes which are largely confined (0 only a
subset of the sample areas. These are similar 1o but not the same as what we have termed geographical
domains in thal the latter are explicilly defined as area domains.

|3] As an intermedialc category, we have mixed classes which are neither highly segregatcd nor well
distributed like cross-classes. Examplcs are cerlain classes defined in terms of socioeconomic
characteristics, such as persons with higher education or in ccrtain occupauions which are highly
unevenly distributed between urban and rural areas.

While technical delails are discussed in Chapter 6, some important features of subclass sampling errors should me
noted here. Empirical results show that the pattern of variation of sampling error with subclass sizc is closely related
10 how the subclass elements are distributed over the population. Sampling errors increase with decrcasing subclass
size: in a simple random sample in inverse proportion to the square-rool of the subclass size, bul not quite
proportionaltely in complex samples. This is becausc generally, design effects (defis) decline as we move [rom the total
sample (o estimates over subclasses. In well distributed cross-classes the decline in dell with decrcasing subclass size
tends 10 be more marked than in less well distributed classes; consequently in the former the increase in sampling
error with decreasing samplc size tends 10 be less steep. In any case, the patlern of variation of the subclass sampling
crrors depends on the nature of their distribution in the population.

Another factor, though generally lcss important than the above, is Lhe correlation between Lhe characleristic defining
a subclass and the subslantive vanablc being estimated. Subclasses defined in terms of characteristics which are closely
related Lo the substantive variable being cstimated ofien tend 1o be more homogeneous than the population at large.
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This tends Lo reduce the sampling error for the subclass categories concerned, or moderate the increase as we move
from the total sample 10 subclasses.

In situations where the total sample design cflects themselves are close to 1.0 (ie where there is little impact of
clustering of the sample), the need to compule sampling errors over many subclasses is reduced. It is more important’
to study Lhe patlerns of variation across subclasscs of dillerent types and sizes for heavily clustered designs with large
design effects, and especially for variables with the largest defis. In any case, the appropriate strategy is 10 begin by
computing sampling errors (including design cffects) for diverse statistics with the total sample as the base, and il
necessary separalely [or diflerent geographical domains, and then decide as (o what extent and for whalt types of
subclasses additional computations will be most useful.

Subclass Dilferences

Almoslt all surveys involve many comparisons across subgroups and/or over time. Hence il is important (0 have
information on estimates of differences betwcen subclasses and between samples over lime. Fortunately in many
circumslances it is possible 10 be quile selcctive in computing sampling errors for dilferences and comparisons, in so
far as the palttern of results can be deduced from the results for individual subclasses. For instance in comparisons
bciween subclasses based on independent samples, the variance of the dilference is simply the sum of variances of
the classes being compared. This gencrally applies to comparisons between geographical domains and often atso o
thosc beciween segregaled classes.

For mixed or cross-classes, where the groups being compared come from the same primary selections, the variance.
of the dillerence needs Lo lake into account the covariance lerm. However, cven here the effects of clustering and
stratification often rapidly decline with decreasing subclass size, making the pattern of sampling errors for differences
simpler and more prediclable, thus reducing the nced for many separalc compulations. In summary, il is morc
important 1o compute sampling errors of dillcrences [or subclasses which are overlapping and large in size, and (or
variables with large subclass design effects.

ILLUSTRATION 4A COMPREHENSIVE SETS OF SAMPLING ERROR COMPUTATIONS

The national fertility surveys conducted under the World Ferlility Survey (WES) programme in 42 developing
countries provide an example of one of the most systematic efforts in computing and presenting sampling errors for
a wide range of stalistics from a complex survey. The example below illustrates the points discussed above concerning
the selection of statistics for variance computation. The core of the surveys involved interviewing women in the
child-bearing ages on their demographic and background characieristics, marriage and birth histories, knowledge and
usc of contraceplive methods, and prelerences concerning child bearing.

Table 4A.(1) shows somce results on sampling crrors from the WFS. Countries included here are only a small subsct
of the WFS surveys, for almost all of which comprehensive information on sampling errors is available in the national
survey reports. The results shown here are 1aken [rom a comparative study (Verma, Scotl and O'Muircheartaigh,
1980); the actual sets of variables and subclasses covered in the national surveys differed somewhal from country Lo
country.
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The first column in the tablc shows a set of variables selected for sampling error compulation. This set covers most
of the subslantive topics of inlerest in the surveys. Nole that even in a complex survey, this number of variables is
quile manageable. The variables have been grouped according Lo topic. There is also a certain degree of homogeneity
within the groups in terms of the pattern of sampling errors (as indicated from example by the design effects shown).
Mosl variables of interest were in the form of proportions or means, the estimation of population totals or aggregates
not being an objective of the surveys. The sct shown includes most of the important mcans; the coverage of
proportions is more selective becausc of similaritics in the pattern among different proportions of the same type.

Belore considering the computation of sampling errors over diverse subclasses, it is necessary (0 examine the results
for the sct of variables computed over the total sample. Rather than the actual values of standard errors, il is morc
useful (o study a derived statistic such as the design clfcct (deft) which is more dircctly comparable across diverge
domains and subclasscs of the sample for a given variable or set of variables. As dctailed in Chaplers 5 and 6, defl
values are oflen similar across domains of similar design; across well distributed subclasscs, defts tend Lo decline with
subclass size. It is more important (10 compute sampling errors for differcnt domains and diverse subclasses for designs
with large defts, especially for variables with particularly high values. Compulations [or subclasscs are less necessary,
and hence can be undertaken morc sclectively, in cascs where the total sample defts themsclves are small (close
o 1.0).

The total sample defts are relatively large in Table 4A.(1) for countries like Nepal, Mexico, Thailand, Indonesia and
Colombia, where the deft values range from 1.5 1o 2.3; by contrasi, the overall deft values are smaller in the fertility
surveys of countries like Bangladesh and Fiji. (Countries have been arranged in the table in order of decreasing deft
averaged over all variables over the total sample.) In the WFS surveys in Sri Lanka, Guyana, Jamaica and Cosla Rica
(not shown here, but available in the original source to the table), defis computed with the total sample as Lhe base
averaged under 1.2.

Thc subclasses of interest are determined according to the tabulation and analysis requircments of the surveys. In the
present case, subclasses representing demographic groups (age, marriage duration, family size groups, etc) are the
mosl important because they are closcly related 1o the variables being studied in the surveys. Next come the classes
defined in lerms of socioeconomic characteristics, which are important in the study of differentials. Table 4A.(2)
specificd a typical set. Regarding geographical domains, the requirements are much more country-specilic, despite
the common conlent of the surveys being considered here. However, the requirement for separate urban and rural
computation is common. -

Another example of comprehensive work in the area ol sampling errors is provided by the equally wide-ranging serics
of surveys conducted more recently in developing countries under the Demographic and Health Survey (DHS)
programme. Thc content of the surveys parallels the WFS, cxcept for a much wider coverage of variables related Lo
mother and child health but somewhat less elaborate coverage of socio-economic characteristics of the survey
respondents. On the following page Table 4A.(3) provides a typical example of variables selected for sampling error
computation, and Table 4A.(4) shows the total sample delts, taken from a comparalive study of the DHS surveys
(Aliaga and Verma, 1991). The sclection of results shown here complements that from the WES by covering a number
of mother and child health (MCH) variables, and also by providing data from scven Alrican countries. Together, 1the
two series provide perhaps the most impressive set of comparative data on sampling errors from surveys in developing
countries, albeit in a particular subject matter arca. Frequent reference will be made to these results in the [ollowing
chapters to illustrate various practical issues in the computation and analysis of survey sampling crrors.



TABLE 4A_(1). List of variables and defis based on the total sample from the world fertility survey.
(Source: Verma, Scott and O’Muircheartaigh, 1980)

Design factors (deft) for the total sample

Bangla-
Nepal Mexico Thailand  Indonesia Colombia  Peru desh Fiji
NUPUALUY
01 ", currently marned 1-14 1-68 1 06 1-35 126 1-02 105 107
02 °, exposed to child-bearing 211 113 1-59 1-36 107 2S5 106 1-36
03. ", with marnage dissolved 141 0 9% 14q 1-47 109 113 121
04 " remarned 112 149 151 1-24 112 139 1
05 number of marriages - 136 130 179 1 69 -10 141 147
06. age at marriage 249 176 124 154 135 10S | 48 165
Q7. time spenl within marnapge - 125 114 1-09 1-04 104 0-97
FURLILITY
08. *, pregnant 139 106 102 131 086 126 110 130
09 children ever-born 20K 178 1-52 134 115 1-07 105 098
10. living children 196 178 129 143 111 112 100 0-94
1. births in first § years o2 1-34 0-98 1-38 0 k8 0-87 124 108
12. births during past 5 years 274 158 - 1-54 131 144 103 LM}
13 tint hirth interval 138 |1 22 116 144 125 114 1-20
14 last closed birth nterval -1 1-32 1-43 1-43 104 102 117 0 K9
15 open birth interval 208 I-61 1 37 I'56 114 092 120
16 months breast fed child 208 208 [ 9R [ 46 152 150 112
17. 16, excluding dead children 1-26 1-45 1-75 1-2% 1:50 1409 116
18 °, of children who dicd 170 208 130 1-34 163 1-81 1 08 111
TUTY PRIOVLRINC (S
”';‘)l. 'l',, lust pregnancies unwanted - 144 R 1-34 110 163
20 ., wanting na more children Y 1-30 129 171 112 114 128 1 62
21. “, expressing boy-preference 213 106 1-18§ 1-34 106 097 1-23 094
22 ° exceeded desired famly size 27 149 1-18 1-31 1-46 1-21 117 129
23 uddiuonal children wanted Vo o 196 L6 162 149 42 123 182
24. desired [armily sz 376 174 163 1 RO 1R 132 126 122
] TANOWLLIK
‘”'2\5',“'7:;::\::11; pill 315 30 274 23 184 174 170
26 ", knowing 1UD 298 25K 230 171 -
27 . hnowmg condom 244 230 194 260 238 1 142 1 66
28 ", hnowing modern methed 419 2N 277 204 240 210 | %0
ON " Ve st . R
”);9'.“"'\,7 lc:cnr ll.Lsed il 1 9% 208 195 1 82 I 26 130 132
30 ", ever wed {UD 190 121 105
31 7, ever used condom | 56 1 l? 1 82
32. 1 ever used any method 21 219 138 | 79 235 1 %4 | 56 142
33. " ever used modern methad JuK 1M | 53 121 Il 32 l| ;: 1-44
3 " used 1n open interval 1 96 178 1 10 208 -
;2 «" used in Cl'?,icd interval 130 169 147 099 126
36 ", currently using any method 1 96 208 167 | 9% 1 30 | 36 1 .:n
37 . currently using modern method 1 %3 238 | 72 149 1 06 122 129
38, 17, [or woinen wanting no 1 50 219 152 134 1 06 120 102
mare children
SAMPLE SIZF (cver-muiried women) S940) 6255 JK20 9136 Jan2 5640 6511 492K
40) In2 70 A6 4005 410 240 (1L

Nu of effecuve PSUS
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TABLE 4A.(2). Example of the subclasses used in 4A.(1).

Definition of Subclasses Used
The term subclass is used to refer to a subset of the sample defined in terms of a particular
attribute of the individuals in the sample. Sampling error of each variable was computed for the
following sets of subclasses in most countries. Note that only the demographic subclasses are
strictly comparable between countries. To compule subclass differences the subclasses were
taken in pairs in the order in which they have been listed below.

Demographic subclasses

Age : Women aged under 25 (M, = 0-25);t womcen aged 25-34 (M, = 0-35): women aged 35 44
(M, = 0-27), women aged 45 49 (M, = (0-13).

Marriage duration : First married less than 5 years ago (M, = 0-20); 5-9 years ago (M, = 0-20):
10-19 years ago (A, = 0-:32); 20 or more years ago (M, = 0-28).

Children ever born : 3 or fewer children (M, = 0:50); 4 or more children (A, = 0-50).

Socio-economic subclusses

Age al first marriage © under 25; 25 and over (under 20, and 20+ wn Bangladesh and Nepal}).

Woman's literacy (1} : not literate; literate.

Women's literacy (2) : as above, but conlined to women currently aged 25-34.

IHusband’s level of educution : no schooling; altended primary but not completed: completed
primary; secondary or higher.

Husband’s occupution : technical, admintstrative or clerical: sales and services: skilled or
unskilled manual; farming.

Religion, ethnic group, ctc. : as relevant.

Segregated clusses (yeographic domuains)
Type of place of residence : urban; rural.
Region @ usually 3-6 mujor regions of the country, as relevant.

t AL, = approximate size of the subclass as a proportion of the 1owl sample of women




TABLE 4A.(3). List of variables for sampling crror computations for DHS (Source: Aliaga and Verma, 1991)

group code type?* description
fertility and related
1 1 BBEFXX p birth before a certain specified age
1 2 CDEAD r.m proportion (or mean number) of children dead
1 3 CEB m mean number of children ever-born
1 4 CEB40 m completed fertility (to women aged 40+)
1 5 CMAR p proportion currently married
1 6 CSUR r,m proportion (or mean) of children surviving
1 7 EXPOS p proportion exposed
1 8 PREG p proportion pregnant
1 9 SINGLE p proportion single
%ealth
2 10 ATTE r proportion of deliveries attended
2 11 BCG r proportion of children receiving BCG
2 12 COUGH r proportion of children having cough
2 13 DIAR r proportion of children having diarrhoea
2 14 DIATR r prop. of children receiving treatment for diarrhoea
2 15 DPT r proportion of children receiving DPT
2 16 FEVER r proportion of children having fever
2 17 FULLIM r proportion of children receiving full immunisation
2 18 HCARD r . proportion of children having health card
2 19 HTAGE r height for age
2 20 MEASLE r proportion of children having measles
2 21 PpoLlIO r proportion of children receiving polio imm.
2 22 TETA r proportion of children receiving tetanus imm.
2 23 TREATC r proportion of children receiving treatment for cough
2 24  TREATF r proportion of children receiving treatment for fever
2 25 WTAGE r weight for age
2 26 WTHGT r weight for height
fertility preferences -
3 27 DELAY p proportion wanting to delay next birth
3 28 IDEAL m mean ideal family size
3 29 NOMORE p proportion wanting no more children
lcontraceptive knowledge and use
4 30 Cuse p proportion currently using contraception
4 31 EVUSE p proportion ever-used contraception
4 32 KANY p propartion who know of any method
4 33 KMOD p proportion who know of any modern method
4 34 KSOURC p proportion who know of any source of method
4 35 UCOND p proportion ever used condom g
4 36 UIUD P proportion ever used IUD
4 37 UMOD p proportion ever used any modern method
4 38 UPIL p proportion ever used the pill
4 39 USTER p proportion ssterilised
lproximate factors .
5 40 ABST m mean length of post-partum abstinence
5 41 AMEN m mean length of post-partum amenorrhoea
5 42 BF m mean length of breast feeding
5 43 UABST p proportion ever used abstinence
5 44 UTRAD p proportion ever used traditional method
lbackground characteristics
6 45 EDUC p proportion with higher education
6 46 MBEFXX p proportion married before a certain age
6 47 NOED p proportion with no education
[* p=proportion of women; m=mean per woman;
rzratio of two substantive variables.




TABLE 4A.(4). Compuled design effccts (defts) for the total sample -
Demographic and Health Surveys (DHS) programme.
(Source: Aliaga and Verma, 1991).

country------ GHANA UGANDA DOMINICAN REP.  BRAZIL ECUADOR KENYA
----------- Z1MBABME BOTSWANA PERU EGYPT SENEGAL THA1 LAN@
Eariable 10 20 30 40 50 60 70 80 90 100 110 120

roup s.no.

1 1 BEFX 1.26 1.47 1.16 1.34

1 2 CDEAD 1.24 1.24 1.29  1.14 1.20 1.14 1.28 1.33

1 3 CEB. 1.02 0.99 1.03 1.33 1.33 1.09 1.3 1.646 1.29 1.15 1.51 1.84
1 4 CEB4O0 0.98 0.98 1.18 1.02 1.16  1.21 1.12  1.57 1.18 1.34 1.59
1 5 CMAR 1.0 1.06 1.30 1.53 1.43 1.12 1.43 1.38 1.87 1.59

1 6 CSUR. 0.99 0.9 1.02 1.34 1.30 1.05 1.28 1.37 1.26 1.10 1.48 1.73
1 7 EXPOS 1.22 1.09 1.3% 1.15 1.16

1 8 PREG 1.17%9 0.79 1.12 1.09 1.09 1.05 1.12 1.20 1.04 0.97 1.54

1 9  SINGL 1.60 1.16 1.35 1.41 1.77

2 10 ATTE. 1.21 1.3 1.23 2.1 1.63 1.35 2.9 1.68 2.03 2.10 2.17
2 1 BCG. . 1.01 1.28 1.01 : 1.62 1.17  1.23

2 12  COUGH 1.33 1.25 1.66 1.39

2 13 DIAR. 1.35 1.18 1.34 1.61 1.33 1.08 1.14 1.40 1.07 1.48
2 14 DIATR 1.50 0.98 1.25 1.23 1.13 1.23 1.03 1.07 1.17
2 15 DPT.. 1.18 1.30 1.06 1.42 0.87 1.52

2 16 FEVER 1.39 1.79 1.23

2 17 FULL1 1.20 1.05 1.24 1.44 1.24

2 18 HCARD 1.43 1.20 1.26 1.18 1.35 1.07 0.99 1.01 1.63
2 19 HTAGE 1.08 1.30 1.07

2 20 MEASL 1.42 1.33 1.04 1.54 1.00 1.33

2 21 POLIO 1.19 1.1 1.05 1.34 1.11 1.26

2 22 TETA. 1.91 1. 1.63 1.70 1.28 1.28 1.83 1.60 1.42 1.83
2 23 TREATC 1.18 1.18 1.14 1.54

2 24 TREATF 1.58 1.26 1.47

2 25 WTAGE 1.04 1.33  1.19

2 26 WTHGT 1.05 0.9 1.06

3 27 DELAY 1.21 1.10 1.08 1.35 1.19 1.08 1.26 1.1 1.08 1.13 1.30 1.41
3 28 IDEAL 2.14 1.33 1.55 1.20 1.43 1.38 1.64 1.21 1.66 2.1 2.35
3 29 NOMORE 1.36 1.25 1.20 1.14 1.26 1.09 1.29 1.50 0.95 1.26 1.35 1.37
4 30 CUSE. 1.16 1.14 117 1.26 1.3 1.21 1.22 2.27 1.42 1.35 1.49 1.54
4 I EVUSE 1.76 1 1.66 1.51 1.35 1.38 1.31 2.70 1.62 1.82 1.70 1.72
4 32  KANY. 2.48 1.48 2.61 1.53 2.19 1.54 2.37

4 33 KMOD. 2.57 1.26 1.66 2.67 1.58 2.18 1.73 2.66

46 34 KSOURCE 1.61 1.24 1.66 2.51

4 35 UCOND 1.32

4 36 UIUD. 1.89 2.10
4 37 UMOD. 1.21 1.20 1.27 1.29

4 38 UPIL. 1.1 1.19 1.20 1.66 1.28 1.86
4 39 USTER 1.26 1.15 1.22 1.24 1.88
5 40 ABST. 1.40 1.34 1.41 1.06 1.02 1.20 1.20 1.09 1.40 1.42 1.25
5 41 AMEN. 1.32 1.09 1.24 1.05 1.09 0.97 1.26 1.15 1.01 1.37 1.36
5 42 BFEED 1.21 1.09 1.19 1.12 1.14 1.09 1.15 1.24 1.1 0.85 1.12 1.51
5 43  UABST 1.07 1.28 1.13

5 44 UTRAD 1.05 1.16 1.09 1.23 1.36

6 45 EDUC. 1.87 1.73 1.82 1.77 1.98 1.53 2.28 3.07 1.95 2.02 2.33 2.10
6 46  MBEFX 1.26  1.43 1,57 1.50 1.73 1.2 2.26 1,43 1.82 1.73

6 47 NOED. 2.96 2.23 1.98




4.3 CHOICE OF THE METHOD

The strengths and limitations of the various practical methods for computing sampling errors for large-scale surveys
have been indicated in the description of the methods in Chapters 2 and 3. The most important considerations are
summariscd below with a view Lo indicating the method or methods which might be the most suitable choice in
particular circumstances.

Criteria in the Choice of a Mecthod

Several criteria are involved in the choice of a method in practice. Roughly in order of importance, these include:

[1]  availability and convenience of soltware for application of the method;

[2]  issues relaling to compulational convenience, economy and speed;

[3] the type and range of statistics for which sampling errors are required;

{4]  the complexity of the estimation procedures involved;

[3]  how well the sample structure fits or approximales the model assumed for application of the method;
[6] statistical properties of the various methods; and

[7] suitability of the method 10 meet special requirements such as analysis of variance components or
estimation of non-sampling componcnts of variance.

Linecarisation

The linearisation approach has certain advantages in being able to handle a diversity of designs more easily, especially
for the estimation of means and proportions. This can be important in the context of household survey programmes
where a number of surveys with different designs may be involved. Another advantage is that less computational work
is involved than the altcrnative approaches based on repealed replication. Despite the rapid improvement in compulter
facilities, the volume of compulational work can still be an important consideration in the choice of a particular
method, especially in developing countries. In fact, the difference between the methods in this respect becomes more
marked for samples with many strata and PSUs, because with repeated replicalion, the number as well as the average
size of replications increascs in proportion to the number of sample PSUs. it is an important point because it is not
uncommon in developing country surveys 10 use samples with several hundred PSUs (lllustration 3A).

However, perhaps the critical factor favouring this method is its advantage as regards the availability of general
purposc ‘portable’ soltwarc for its application. Many devcloping country organisations are not in a position to develop
and maintain their own special purpose soltware. (Section 4.6.)

Its main limitation is the difficulty (or at least the nced for special procedures) in dealing with complex statistics and

estimation procedures.

Repcated Replication

Repeated replication methods also have their advantages, and represent the only available choice for certain special
purposes. They are especially appropriate for handling complex siatistics (such as coefficients in multiple regression);
and even more importantly, for complex estimation procedures involving a number of adjustments to the data - which
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are not so uncommon in survey analysis even in developing countries. Some examples of such application are given
in Illustration 5B.

Of the two main repealed replication methods, JRR is preferable for being technically the simpler and also somewhat
more flexible, though generally it involves more computational work than BRR. The BRR mcthod is Lechnically more
complex, and also more restrictive in the sample designs handled, or at least the cxira sieps required in dealing with
designs other than the basic paired selection model. In designs with many small PSUs, it may be necessary Lo delinc
more suilable - generally larger, fewer and more uniform compuling unils. This requires care in ensuring that the
redefined units still properly reflect the aclual sample structure: otherwise the variance eslimation may be biased. An
cxample of such redefinition is provided in [llustration 4B below.

Nevertheless, while Lhe linearisalion approach rcmains the most commonly uscd mclhod, 1he use of repecated
replication procedures is increasing, especially for complex statistics.

The Overriding Consideration.

Regarding the comparison belween linearisation, JRR and BRR, the main conclusion is thal in many circumstances
any of thesc methods can provide salisfaclory results: when judged by several criteria nonc of them has been found
to be strongly and consistently betier or worse (Kish 1989, 13.5). Therefore the choice among them is chiclly
determined by practical considerations of convenience, cost and availability of software.

Independent Replications

Note should also be taken of the possible uses of the simple independent replication approach in cerlain
circumslances, as noled in Section 3.2. Where the sample design permits, there can be advanlages in considering Lthe
simple replicated approach, especially in developing country circumstances. This is despile the various (and some
scrious) limitations of the method. The simplicity ol the approach means thal, where applicable, the mcthod will
cncourage the computation and presenlation of sampling errors. This is important because al present, the common
situation unfortunately is that in many surveys no information whatever is provided on sampling crrors. With the
simple replicated approach no special-purposc software is required and some information on sampling crrors can be
generated simply as a by-product of the normal process of tabulation of the survey data. The computational cost is
the need to produce scparate estimates [or each replication.

It is also not necessary Lo rely on the independent replication approach as the sole or even the main method of
variance estimation: where applicable, the method ean be used 1o complemcent Lhe resulls [rom more precise mcthods
of variance estimation. It can be uscd 10 obtain quickly and cconomically rough estimates of sampling error for a wide
range of statistics, from which general patterns may be identified and subscts for more precise compultations using
more sophisticated methods selected. The simple method can also be used to check the resulls of more complicated
approaches for gross computing crrors. Aclually, comparisons among replicated estimates can be helpful more
generally in identilying unusual patterns in the survey results which indicate the need for rechecking the survey
procedures.
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4.4 FITTING THE SAMPLE STRUCTURE TO THE ASSUMED MODEL

Variance estimation requires two or more replicates selecled independently from each stratum. As alrcady noted in
Chaplers 2 and 3, in practical applications il is sometimes necessary lo combine or redefine actual PS's and strata
(o obtain the primary units and strata 10 be used in the compultations. This may be necessary for several reasons.

(1)  Itis common in practice that the actual sample structurc does not cxactly correspond (o the model required
in the variance estimation procedure. To apply the procedure some additional assumptions have Lo be made
regarding the sample structure. Ideally one would likc to cnsure that any bias resulting from additional
assumptions is unimportant, or at least that it results in ‘safe’ (conservative or over-) estimates of variance.

(2) Redcfining compuling units can reduce and simplify computational work.

(3) Redefinition may also be introduced to improve statistical properties ol the variance estimates generated,
such as reducing their variance or bias, or making their sampling distribution more nearly normal.

441 COLLAPSED STRATA TECHNIQUE

A common [eaturc of many sample designs is the sclection ol a single PSU per stratum. This is achieved either
explicitly through finc stratification or implicitly through systematic selection. In some designs, special techniques such
as 'controlled selection’ are used in which more strata (controls) are introduced than the number of primary units
which can be selected. An example of the latter is provided by a recent food consumption survey in Indonesia where,
because of the complex and intensive nature of the survey, the sample had 10 be resiricted (0 4 relatively small
number of PSUs, but it was nccessary Lo simullaneously control for diverse urban-rural, regional, ecological and
human faclors alfecting patlerns of food consumption. The use of such techniques helps o0 improve sampling
cfficiency, but in general does nol permit unbiased estimation of variance. The usual method of variance estimation
in such situations is called the collapsed sirata technique. Essentially, it amounts to trealing each set of two or more
PS’s as random selections {rom a single stralum, thus disregarding some of the original stratification. Generally this
involves some over-estimation of variance. The routine practice is Lo minimise the amount of collapsing, only (o the
point that each newly defined stratum contains the minimum number (namely 2) of PS’s essential for variance
cstimation. Collapsing in pairs also has the advanlage of simple variance cstimation formulae, which is useful with
linearisation methods, but much more important in methods like BRR. (Illustrations 2A and 4B.)

Greater degrees of collapsing, for example in triplets instcad of pairs of strata, would tend (0 increase the
overestimation but may also reduce the variability ol the computed variances (Kish and Hess 1959; see also 4.4.5
below). Hence in terms of overall accuracy (mcan squarcd error) the best strategy for collapsing strata is a more
complicated issuc. In a discussion of the issue, Rust and Kaltori (1987) note that while collapsing in pairs "is generally
appropriate for national estimates [rom large-scale surveys with 60 or more PSUSs, a greater degree of collapsing may
be appropriale when a small sample of PSUs is selected, and especially so when the number of PSUs is as low as,
say, 20." The authors also note that a greater degree of collapsing is indicaled when the sample size per PSU is small,
or when subclass as distinct from (otal sample eslimales are important, or when the diflcrences beiween the strala
means are small.
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Since the actual gain from stratification depends on the difference between stratum means, the overestimation due
to collapsing strata also depends on the same factor. On the basis of a simple model it can be shown that the
overestimation is twice as large as the actual reduction in variance as we move from a 2-PSU per stratum design to
a finer stralification with 1 PSU per stratum. In other words, there is an apparent loss in precision cqual in magnitude
to the actual gain in precision (Cochran 1963, Sec 5A.11). This has an important consequence in practice: collapsing
of strata should be done 50 as to minimise thc difference between strata means. In systematic samples this is generally
ensured by collapsing adjacent implicit strata, in so far as ordering of the units ensures that similar units come
together. In collapsing explicit strata, it is necessary 1o do so on the basis of stratum characteristics. The important
thing to ensure is that this is done on the basis of characteristics of the strata known before the survey, and not on
the basis of the characteristics of the particular units which happen 10 be selecied; otherwise the variance may be
seriously underestimated. This also requires that information on stratum characteristics is recorded and preserved.
(See the warning in Illustration 2B.(2).)

The above also makes it desirable that collapsed strata are similar in size; if not, the variance formulae will need
adjustment. Essentially the adjustment is 1o weight the value for each stratum in proportion to the stratum size.
Specifically, if y, and y, are the estimales for two strala of size S, and S, respectively, and y the total for the pair, then

the expressions (yl—y/2)2 and (yz—y/z)2 in the paired sclection variance formula (equation 2.7, expressed in slightly

different notation):

var0) = 2/0,-2F + 0,2 @1

are replaced by, respectively

(yl_Wl-)')z and (YQ'WZ.)’)Z
(4.2)

where W, =

For ratio means the adjustment is likely to have small effects for moderate differences in the size of the collapsed
strata. However a gross overestimation can resull in the case of sample totals or aggregates (Kish 1965; Section 8.6B).

In grouping systematically selected PSUs 10 define "implicit’ or 'collapsed’ sirata, one should not cut across boundaries
of explicit strata within which the systematic selections were conducted independently. (For instance, if an explicit
stratum contains an odd number of selections, one of the collapsed strata may be assigned threc rather than 1wo units
SO as not to cut across explicil strata used in sample selection.)
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442 RANDOM GROUPING OF UNITS WITHIN STRATA

The above discussion concerned collapsing of strata lcaving the primary units unchanged. It is also possible to group
or combine the units in various ways. One technique is to randomly group.units within a stratum so as (o form larger,
fewer, more uniform in size or otherwise more convenient ‘pseudo primary selections’ (o serve as the computing units
for estimating variance, This technique is useful when, in the whole sample or some of its strata, the original PS’s
are 100 small and/or too numerous for the purpose. The technique is particularly useful in dealing with small
subclasses. It is often unavoidable in the application of repeated replication methods.

With random grouping, no additional bias is introduced in the variance estimation; however because of the reduced
number of computing units its variability may be increased. On the other hand, there are also some advantages.
Grouped unils can be made more uniform in size. The technique also reduces computalional time, and the
distribution of characteristics of the grouped unils, based on sums of variables, better approximates normality.

In random samples of units, the appropriate method to group unils is to select random subsamples of those units.
In a systematic sample, the groups should be formed by selecting ‘interlocking’ systematic subsamples; for instance
if eight units numbered 1 o 8 in a systematic sample are to be grouped into two pseudo units, unit numbers (1, 3,
5 and 7) may appear in one group and the remaining in the other (see Illustration 4B). Grouping of adjacent units
(which is sometimes done for convenience) would tend Lo under represent the benefit of systematic sampling.

4.43 COMBINING UNITS ACROSS STRATA

In samples consisling of many small PS's selected independently from many strata, units may be randomly grouped
across strata so as to give fewer strala and fewer and larger units for variance compultation. As with random grouping
of units within strata, the technique docs not introduce bias but may increase variability of the variance estimator;
it has similar advantages of reduction in computing time and of improved approximation to normality. Combining
across strata may be accompanied (preceded) by random grouping of unils within strata. A convenient way to apply
this method would be to first group PS’s within strala as necessary so thal each stralum conlains the same number
of grouped units, and then form the final computing units by taking one such grouped unit from each stratum at
random. Deming (1960) terms this technique "thickening the zones".

The creation of indcpendent replications as discussed in Section 3.2, each containing one or more units from gvery
stratum, can be regarded as an extreme example of this procedure.

4.44 SO-CALLED 'SELF-REPRESENTING PSUs’

The term ‘self-representing PSUs’ is sometimes used (o refer Lo units which appcar in the sample with certainty. This
happens when some of the units described as *PSUs’ in the frame are considered so large and important that they
are automatically included into the sample, while elsewherc other units of the same description form the true PSUs
and are subject 10 the sampling process. The description of the former as 'sell-representing PSUs’, though common
and possibly convenient for descriptive purposes, can be confusing and should be avoided. Each such unit actually
forms a stratum, and the next stage units within it actually subject to sampling are the PSUs to be used (or
appropriately combined as explaincd above) for computing sampling errors.
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445 VARIABILITY OF THE VARIANCE ESTIMATES

It is important to realise that variance estimates from sampies are themselves subject to variability, particularly for
samples based on a small number of primary selections. The precision of variance estimation is a complex subject.
For rcasonably large samples with good control o ¢liminate extremes in ‘cluster sizes' (ie in sizes of the primary
sclections), a useful approximation (o the coefficicnt of variation of a variance estimalor is given by Kish (1965;
Scction 8.6D) as:

o - 2 4.3)

where "df" is the degrees of freedom, approximately equalling the number of PSUs selected less the number of straia.
With 2 PSUs per stratum {rom H strata, we have df = 2H - H = H. In general, with a total of a primary sclections
from H strata, we have df = a - H, since one df is lost in taking the squared differences from the stratum mean in
each stratum for the estimation of variance. For example, with 48 PS’s with 3 from each of 16 strata, we have df =
48-16 = 32; however, with the 48 sclections coming in pairs from 24 strala, we have df = 48-24 = 24. Hence with
less detailed stratification, the variance estimation is more precise, though the magnitude of the variance itself is
generally increased. In so far as the latter is more important, stratification is usually carried out 10 the maximum
extent possible, often even beyond the level of 2 PSUs per stratum - resorting (o ‘collapsing’ for the purpose of
variance estimation.

In the case of a systematic sample, it was noted above that the common practice is also to collapse pairs of adjacent
strata to form new compuling strata for variance estimation. With a greater degree of collapsing than the minimum
required (eg. triplets in place of pairs), degrees of freedom and hence precision of the variance estimation is increased;
but at the same time the overestimation bias is also increascd. An alternative procedure with systematic selection,
referred to in Section 2.4 (equation 2.22) is as [ollows. In place of forming (a/2) non-overlapping pairs of adjacent
units, one may ulilise all possible (a-1) successive differences among the ordered list of (a) units selected
systematically. The advantage of this procedure is that it does not increase the overestimation due (0 collapsing
beyond that with the normal pairing, but it reduces the variance of the variance estimator.

The lack of precision of sampling errors computed for individual geographical domains can be a particularly serious
problem because each such domain may contain only a small number of primary selections. What can be done 10
reduce this problem? The basic ‘remedy’ is (0 pool computations [rom several samples, and replace the results of
individual computations by appropriately averaged values, as discussed more fully in Chapter 6. In addition, one may
avoid computations for separale domains and impute values from the total sample, perhaps with some appropriate
adjustment if nccessary. Certain sample designs involve the selection of a small number of large PSUs, but the
selection of many small clusters or area units al the sccond slage. In such cases, an option may be to compule
variances by treating the more¢ numerous SSUs as if they were the primary sclections, and then to adjust the resulls
for the excluded contribution of the first stage (Kish 1989, Section 14.4). This is useful if the first stage contribution
is small or can be estimated from some other source.
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44.6 CODING OF THE SAMPLE STRUCTURE

To compute sampling errors it is essential that all necessary information on the sample structure is available, ideally
on the computer data files, as emphasised carlier (Section 4.1). At a minimum the information should include

[1]  Identification of the strala as used in the computations, taking into account any collapsing or other
modifications which may have becn made Lo the original stratification, and the procedures adopted
to deal with systematic sampling.

[2] Idenlification of the primary computing units, taking inlo account grouping or combining of the original
selections, and ensuring that at least two such units are available from each stratum.

[3] Weights assigned Lo ultimale units, ideally as an integral part of the survey micro-level dala.
[4]  Sampling rates, Lo compule the finilec population correction if relevant.

5]  Identification of the domains and subclasscs for which separate estimalces arc to be produced.

Additional information will be required if the overall variance is to be decomposed into components according Lo
diffcrent stages of sampling or estimation, or other aspects of the sample structurc. (Chapter 5.)

45 REDUCING COMPUTATIONAL WORK

There arc several ways of reducing the work involved in the computation of sampling crrors: confining the
compulations (0 an approprialcly sclected subsample only; redefining the sample structure for the purpose;
simplification of the variance estimation procedure; and imputing crrors computcd for a subset of statistics Lo other
statistics,

Computation Over a Subsample

A simple option is Lo base the compulations on a subsample of the full sample. The subsample should of course
reflect the structure of the lull samplc; it is also necessary 10 correctly establish the relationship betwecn the variances
corresponding (o the full sample and the subsample. This procedure is useful only when the sample consists of a large
number of primary units, so that the loss in precision in variance cstimation from only a subsample is acceplable. Also
the subsampling rate should be small enough so that the saving in compuling time more than compensates for the
additional cost and trouble of constructing the subsample. Two obvious examples of where the approach may be
considered are: (i) computing sampling errors [or large ccnsus samples which are often attached 10 the full census
to collect additional information; and (ii) samplc surveys based on a large number of elements selected in a single
stage. Occasionally the technique may also be considered for clustered designs with numerous small PSUs, such as
small clusters of households.

The basic idea is to estimate unit variance from the subsample and then (o use it in the variance formula for the full

sample in the ordinary way. The concept of unit variance is useful when the variance or a component of variance is
inverscly proportional (o the number of units (sce Section 6.3 [or further discussion). As a simple example, consider
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a SRS of size n from which a random subsample of size n’ units is selected. In the ordinary expression [or variance
ol a mean (corresponding (0 Lhe [ull sample)

(4.4)

n
n N

var(y) = (1—_/).52, where f =

the idea is to estimate unit variance s* from the random subsample as

2
§2 = ,LIE/)'IZ _ @ y) (4.5)
n'-

n/

where the summation is over n° units in the subsample. Similarly in estimating the variance of a total y from a
multistage sample

):,Vyf-@yi

/

. (4.6)

var(y) = (1-f).a, -
a-1

the quanlily in the square brackels has been estimated from a random subsample of a° primary selections from the
a primary sclections in the full sample. The same idca can be extended in a straightforward way o a stratified sample,
by applying the above expression scparalely for each stralum, provided at least two primary units appear in the
subsample for each stratum. Introducing subsampling within sample PSUs would generally resull in much more
complex relationships between the required variance for the full sample and the computed variance from the
subsample - requiring some additional assumptions or modelling in most situations.

Wilh rapidly improving compulter facilitics, the introduction of subsampling (o reduce computing work is hardly worth

considering in normal household survey work, though i1 may be convenient for some other special purposes as noted
carlier.

Grouping of Units and Strala

Scveral techniques have alrcady been mentioned in Lhe previous section. Random grouping of units and combining
across strata can be a much more uscful means of reducing computational work than for example the mcthod of
subsampling. For certain methods (such as the BRR), some grouping and combining is almost unavoidable if the
number of units is large and variable across strala.

Simplifying the Variance Estimation Procedure

Some simplification and approximation is already involved in the various practical procedures for variance estimation
described in the previous chaplers. What makes these procedures ‘practical’ is that the simplifications introduced
greatly reduce the computational work, bul generally with only a minor effect on the accuracy of the variance
estimations gencrated. For instance, with the assumption of independent and with-replacement selection of PS’s within
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strata, variance can be usually estimated with only a small approximation, simply in terms of certain quantities
apgregated Lo the PS level.

Beyond such basic assumptions underlying the various practical methods, it is sometimes also convenient 1o introduce
additional approximalions o reduce the computational work involved. Here arc some examples. The finite population
correction is disregarded (often with good justification), or averaged or assumed uniform within strata even though
actually it may be much morc complex. The same may be donc in relation (o sample weights if they do not differ
greatly beiween units. In the application of the BRR method for instance, one may resort to “partial balancing’ if the
number of strata is 100 large. In the application of replicated mcthods generally, some steps in the estimation
procedure (such as the application of post-stratification weights) may be applicd only once for the full sample, rather
than (0 each replication separalely as required by the method if applied strictly. There are many other specific
instances where certain (hopefully unimportant) components of variance are ignored with a view to simplifying the
compulations involved.

Imputing Sampling Errors

The magnitude and pattern of sampling errors may be related across similar surveys, similar subclasses or similar
variables on the basis of empirical results and/or appropriate models. This issuc is the topic of Chapter 6. Here we
emphasize that the establishment of patterns of similarity is potcntially the mosi effective way of reducing the amount

of fresh sampling error computation which needs o be done in any particular survey.

ILLUSTRATION 4B DEFINING COMPUTING UNITS AND STRATA

In many practical siluations, the samplc structure requircs some redefinition in an appropriate way before a method
of variance estimation can be applied. For example, though the BRR method is not confined to (wo primary
selections per stratum, that represents the most convenicnt design for the method. Some redefinition of the sample
structure may be nccessary or convenient in the application of other methods as well.

The example in Table 4B.(2) is based on a survey in Colombia and shows how the sample structure may be specilied
for the purpose, applying the various ideas discussed in the preceding section. The design consisted of two distinct
domains:

[1] Certain large localities were taken into the sample with certainty, as ‘self-representing’ units. Each locality in
fact formed a separate stratum from which a number of smaller areas (clusters) were selected systematically.
These clusters formed the effective PSUs in Domain [1].

[2] The second domain was composed of smaller localities. A systemalic sample of localities were selected [irst,
and then a sample of clusters taken {rom cach selected locality.

Thus the type of areas (clusters) which form the effective PSUs in the first domain, formed the second slage units
in the second domain. Computing strata and PSUs were defined as follows.
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In Domain [1], each ‘self-representing’ locality (marked with a consecutive set of asterisks in the table) was divided
into one or more computing strata, each stratum consisting of a set of consecutive areas (the actual PSUs or clusters
in the sample). Thus, for example, Barranquilla was divided into two computing strata (numbered 01 and 02 in the
table), the first consisting of clusters 1-14 and the second consisting of clusters 15-30, the clusters being numbercd
in the order of selection. Here, as elsewhere, a desirable objective was to make computing strata and units reasonably
uniform in size. Next, in each stratum so defined, alternative clusters from Lhe ordered list were grouped Lo define
two ‘interlocked’ computing units (replicates) to be used as primary selections for variance estimation. Thus in each
of the above two strata, odd numbered clusters formed the first and the even numbered clusters formed Lhc sccond
replicate. This is the ‘combined stratum’ technique involving the linking of alternative clusters across implicit stralta,
resulting from systematic sampling, into sets each of which forms a computing unit. It also involves collapsing pairs
of adjacent sets so defined to form a computing stratum with two computing units.

The large metropolitan area, from which 136 clusters had been selecied, was divided in Lthe same manner into 9
computing strata (numbered 35-43 in the table), each with 2 computing units.

In Domain [2], computing units were taken 1o be the same as the actual PSUs (localities). Strata were defined 1o
include pairs of adjacent sample localities, following the systematic order of selection. This is the usual way of
constructing ‘collapsed strata’ each with 2 units from a systematic sample of PSUs.

In this manner, 43 computing strata were defined as shown in Table 4B.(1), each with two compuling replicates. The
redefined design is very convenient for the application, especially of methods like the BRR, being bascd on the paired
sclection model. It also reflects the original sample structure in that the stratifying effect of systematic sampling is
retained, apart of course from the usval overestimation of variance which the collapsed strata lechnique involves. By
contrast, the random grouping of clusters and combining randomly across the implicil stratificalion provided by
systematic selection does not bias the variance estimation, though it reduces i1s precision.

Sufficicnt information is not availablc 1o judge in quantitative terms the effect of such redefinition of the sample

structurc on the bias and precision of the variance estimales penerated. Nevertheless, Lhe illustration provides a useful
example of the application of various techniques described in the preceding section.
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TABLE 4B.(1).An cxample of the definition of computing units (effective primary sclections)

for the calculation of sampling errors.
(Sourcc: Estudio Nacional de Salud, Bogola, Colombia).

stratum clusters computing
unit
o1*  01,03,05,07,09,11,13 01
02*  15,17,19,21,23,25,27,29 03
03 (14) 05
04*  01,03,05,07,09,11,13
15,17,19,21,23,25 07
05 (20) 09
06 (18) 1
07 (18) 13
08 (12) 15
09 (21) 17
10 (15) 19
1 (16) 21
12 (18) 23
13 (16) 25
14*  01,03,05,07,09,11 27
15 13,15,17,19,21,23 29
16 25,27,29,31,33,35,37 31
17* 39,41,43,45,47,49,51 33
18 (10) 35
19 (6) 37
20 (18) 39
21 (20) 41
22 (16) 43
23 (14) 45
24 17) 47
25 (16) 49
26*  01,03,03,07,09 51
27 11,13,14,17,19 53
28*  21,23,25,27,29,31 55
29*  33,35,37,39,41,43 57
30 8 59
31 (26) 61
32 [&1°)] 63
33 17) 65
34 (18) 67
35*  01,03,05,07,09,11,13 69
36*  15,17,19,21,23,25,27 71
I 29,31,33,35,37,39,41 73
38*  43,45,47,49,51,53,55 75
39*  57,59,61,63,65,67,69,71 77
40*  73,75,77,79,81,83,85,87 79
41*  89,91,93,95,97,99,101,103 81
42+ 105,107....... 115,117,119 83
43 121,123....... 131,133,135 85

NOTES. (*) indicates random groupings of clusters from the same “self-representing PSU’ to for
one or more pairs of computing units.
indicates the number of clusters grouped to form a single computing unit.

clusters camputing
unit
02,04,06,08,10,12, 14 02
16,18,20,22,24,26,28,30 04
8 06
02,04,06,08,10,12,14
16,18,20,22,24,26 08
a5)) 10
(16) 12
“7N 14
(14) 16
(18) 18
(18) 20
(24) 22
(16) 24
(18) 26
02,04,06,08,10,12 28
14,16,18,20,22,24 30
26,28,30,32,34,36,38 32
40,42,44,46,48,50,52 34
(12) 36
(10) 38
16) 40
(14) 42
(16) 44
18) 46
(14) 48
(16) 50
02,04,06,08,10 52
12,14,16,18,20 54
22,24,26,28,30,32 56
34,36,38,40,42,44 58
8 60
(6) 62
(14) 64
14) 66
(13) 68
02,04,06,08,10,12,14 70
16,18,20,22,24,26,28 72
30,32,34,36,38,40,42 74
44,46,48,50,52,54,56 76
58,60,62,64,66,68,70,72 78
74,76,78,80,82,84,86,88 a0
90,92,94,96,98,100,102,104 82

In the remaining cases,

the figure in parenthese
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46 SOFTWARE FOR VARIANCE ESTIMATION

The application of the variance estimation proccdures described in Chapters 2 and 3 requires access 10 necessary
computer facilities, especially 10 compulter software of known quality and capability. The only procedure that may be
applied as a part of the normal (abulation process is the independent replication method of Section 3.2.

Basic Requirements

The main advantage of general methods of variance estimation is that they can be applied to a wide varicty of sample
designs and types of statistics without modification to the basic procedure, This makes it possible Lo develop general
purpose software for their application. Ideally, one should be able to perform large-scale, routine computations of
sampling errors simply by specilying certain parameters for use by a suitable general purpose software for variance
cstimation.

Kaplan et al (1979) summarise some basic requirements which general programs of variance estimation f[rom complex
surveys should satisfy. They note Lhat a gencral program "ideally should have great flexibility in dealing with various
designs. The program should allow the user Lo describe his design exactly, accounting [or strata, clusters, various slages
of sampling, and various types of case weighting...1f a program is to be of general use it must be reasonably convenient
to learn and usc. Such a program will not only be more useful, but will be easier to check and dcbug, and this, in
turn, will improve accuracy. A good recoding system would allow for easy calculations of estimates for subpopulations.
Missing value codes should exist and the program should be specific about its treatment of missing values, and small
sample sizes (cg cluster sample sizes of zero or one)". Regarding the output generated, the authors note that it should
"ccho all the user commands: all options which were specificd should be clearly repeated, including a description of
the design. The labelling should be clear, and allow the user flexibility in naming his variables. The documentation
of the output should be clear, concise and sclf-explanatory. It sbould also provide references which explain the
statistical techniques programmed.”

In large-scale applications a particularly important requirement for software is the ability o handle in an elficicnt
manncr the large number and variety of statistics for which sampling crrors have o be compuied. Elfficiency refers
not only to computing time, but also (and even more importantly) to the time and trouble required by the user in
specifying the compulations (0 be performed. In more specific terms, the following soltware features are desirable
(Verma, 1982):

[1] The program should be able to handle, simply and cheaply, a large number of variables over different sample
subclasses. It should not require the usc of large computers or other very specialized facililies.

]2] In relation to the study of differentials between subpopulations, sampling errors [or differences between pairs
of subclasses should also bc compuled.

[3] It should be possible to repeal, in a simple way, the cntirc sct of calculations for diflerent geographical or
administratlive regions; such breakdowns are olten required for substantive survey resulls.
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[4] The compulational procedure must take inlo account the actual sample design, in particular the effects of
clustering and stratification, which influence the size of sampling errors. However, the program should not be
limited to a particular sample design, such as a two stage design or the paired sclection model.

[5] It should be able to handle weighted data.

[6] As far as possible, the program should not require any particular arrangement or form of input data. Where
recoding of the raw input data is required, it is desirable that the software package itself should be able o
handle this, without the need o wrile special programs for that purposc alone.

{7] In addition to calculating standard errors, it is also desirable that the program compulte certain other derived
statistics, such as coeflicicnts of variation, design cffects, and roh values. Such computed values may assist uscrs
to extrapolate o other variables and subclasses [or the given sample and possibly also 10 futurc survcys. One
of the objectives of calculating sampling crrors is 10 provide informaltion for sampling statisticians attempting
1o design other studies under similar survey conditions.

In-House Development Versus Acquisition of General Purpose Sofltware

For organisations cngaged in conducling diverse surveys On an ongoing basis, an important decision Lo be taken is
whether 10 develop and maintain in-house its own special purpose soltware, or to try and acquire suitable general
purposc software from some outside source. Several factors have to be taken into consideration in reaching a decision.
The issue in the context of overall survey data processing has been considered in some detail in United Nations (1982;
pp 99-114). The conclusion from Lhe review is summarised as [ollows:

[t is true that statistical offices in scveral developed countrics have invesied heavily in the development of
general-purposc software sysicms for use on a wide varicty of their statistical applications. These systems have been
necessary 10 meet their specialized requirements for survey processing, as well as to inlegrale a standard data
management philosophy across all applications. This is not to say that thesc organizations could not have been
adequatcely served by already existing soltwarc packages but rather, in most cascs, Lhat the decision Lo develop reusable
systems was bascd on a specialized need and the availability of high level programming stalf 1o do the development.

Most developing country statistical offices do not have the luxury of having an abundance of high level programming
stafl to be able to contemplate development of specialized reusable software packages. These organizations arc
cncouraged 10 use existing soltware systems available from other statistical oflices or vendors, and o integratc them
with smaller customized routines required for special needs, in order to avoid the need to program one-lime-usc
customized systems. Writing customized sofltwarce would scem like the more risky approach to take, as data processing
stafl turnover is usually quite high in developing countries, making the maintenance of customized software virtually
unmanageablce.

The above does not imply that there can be no problems in the choice and opceration of appropriate soltware
packages, or that such packages arc available 1o meet all or most of the nceds ol a continuing survey programme.

The main advantage of in-house development is the potential ability of the soliware 1o meet specific requirements

more clfectively; while the main reason for sceking gencral purpose software from oulside is usually the lower cost
and time involved in its maintenance and use.
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ILLUSTRATION 4C SOFTWARE FOR COMPUTING SAMPLING ERRORS: A REVIEW

This review of the available general purpose software for computing sampling crrors in the context of complex, large
scale surveys is presented in the form of an "illustration” for two reasons. Firstly, the review cannot be complete for
lack of information: not all software is publicised, or is cxplicitly placed in the public domain. Secondly, the situation
is prone to change and any information which can be provided here is of less long-term value than (hopefully) the
other material included in this Technical Study.

A Genceral Review of Available Software

The situation regarding softwarc for variance cstimation is rather different from that of software for general survey
processing. For the latler, a variety of gencral-purpose programs arc available, and oftcn the user's main concern is
10 choose the one(s) most suited for his or her particular nceds. However, in the arca of variance estimation, the
problem still is that very little software is available which is suitable for general use by different users. Of coursc there
exist within individual organisations many spccial-purpose programs for variance estimation. However the vasi
majority of these are developed and maintained for the concerned organisation’s own nceds and specific applications,
and are cssentially non-portable and unsupported for use by other organisations or individuals.

For a particular uscr the suitability of any acquired gencral-purpose soltware depends on a varicty of factors such as
(1) particular requircments of the user, eg the type and diversity of sample designs cncountered, the volume and
sophlistication of the compultations required; (ii) hardware, software and 'personware’ environment; (iii) flexibility,
convenience, accuracy and reliability of the software; (iv) its portability to different settings; (v) how well the software
is maintained by the supplying organisation; (vi) the degree of technical sophistication required for its use; and (vii)
its cost, including the cost of initial purchase, mainicnance and operation.

There arc a small number of programs which could be considered suitable for general use. However a selection among
even this smatl number is not casy. The available descriptions ol software tend to be incomplete. It is difticult in
particular 10 obtain reliable information on how portable and well supported any program really is. Claims madce by
supplicrs in this regard are not always rcliable, or at least may not be up-to-daic. In any casc the situation regarding
software availability is constantly changing, and for this and other reasons, it is not possible in the present study (o
make delinitive recommendations on particular programs. Wolter (1985) provides a description of 14 packages which
were believed at the time of the review 10 be "portable’ and "available’ 1o some degree. Generally, the descriptions
are not delailed or complete, and most cases appear Lo have been supplied by the devetopers themselves rather than
being the result of an independent cvatuation. The 14 programs mentioned above are listed in Table 4C.(1), with
some brief remarks.

It can be seen from the table that even among this very limited number of programs, the great majority cannot be
considered easily available or porlable for general application. For example, some were not actually available at the
time of the review (nos 1, 2,9, 13 and 14 in the table below); some were limited 10 special applications and designs
(4, 5, 6, 8); while some others were integrated with large systems not readily or cheaply available (6, 7, 10, 11). This
leaves only PC CARP and CLUSTERS from the list. On the basis of this review the general conclusion regarding
the availability of suitable variance cstimaltion sofltware to developing counltry survey organisations have (o be rather
pessimistic at this stage. Perhaps therc are other suitable programs which have been missed in Lhe review, or have
becn developed since.  Nevertheless the above remarks underline the point that there is a dearth ol good gencral
purpose software for variance estimation which meet the basic requirements of flexibility, portabilily, reliability, ease
in lcarning and using, good documentation, computing efficicncy, low cost, and above all, active maintenance and
support by the supplicr.
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TABLE 4C.(1). A revicw of general variance estimation programs.

(Source: Woller, 1985)

01

03

07

10

12

13

14

Developer/Distributor

BELLHOUSE
D Bellhouse
Univ of Western Ontario, Canada

CAUSEY
Causey
Bureau of the Census, USA

CLUSTERS
V Verma
International Statistical Institute

FINSYS-2
W E Frayer
Colorado State University, USA

HESBRR

G K Jones

National Centre for Health
Statistics, USA

NASSTIM & NASSTVAR
D Morgenstein
Westat Inc, USA

OSIRIS 1V
L Kish
Univ.of Michigan, USA

PASS

D Thompson
Social Security Administration, USA

RGSP
F Yates
Rothamsted Experimental Station, UK

SPL1THAVES
J R Pryor
Australian Bureau of Statistics

SUDAAN
V B Shah
Research Triangle Institute,USA

SUPER CARP
W Fuller
lowa State University, USA

u-sp
G B Wetherill
University of Kent, UK

VIAB & SMED83
National Central Bureau of
Sweden

"At the time of the review in 1985

Remarks

Not yet available’.

No longer available.

New portable PC version
available since 1986;

some support by [SI; also
supplied by the DHS programme
to participating countries.

Specifically for forestry
applications;
restricted to certain designs.

Developed specifically for
Health Examination Survey;
restricted to 2 PSUs per
stratum designs.

BRR restricted to 2 PSUs
per stratum design;
requires SAS.

Expensive (also large
annual renewal cost);
not easily portable.

Not portable;
restricted to UNIVAC.

Versatile, but no longer
formally supported,

Part of ABS's
Survey Facilities System;
not portable.

Usable only in conjunction
with SAS system.

New portable PC version
available (PC CARP).

Not yet available .

VTAB no longer distributed;
SMED 83 still under development
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In the following subsections, two of the more widely available and used programs (PC CARP and CLUSTERS) are
briefly reviewed. Fuller details are available in users’ manuals from the suppliers. Both programs are available for use
on personal computers, free or at a nominal cost.

PC CARP: Cluster Analysis and Regression Program for Personal Computers

A description of the program is available in Fuller et al (1987).

PC CAREP is available on IBM PC (AT or XT) and compatible computers with math co-processor and a minimum
of 410K memory. The program is written almost entirely in FORTRAN (with a smalt portion in IBM Assembly
language) and runs under DOS version 3.0 or higher. For variance estimation, the linearisation procedure (Ch. 2)
is used. The program has a wide range of very useful analysis capabilities as summarised in the tables bclow
reproduced from the above mentioned reference. However, before discussing these capabilities, it is important to note
two limitations of the program in its present version. Firstly, in terms of sample design, the program has a limitation
which may restrict its application in certain situations: presently it can be used to compute variances for one or two
stage designs only. The second limitation is that the program assumes that there are no missing values, ie all data are
available or have been imputed. Though a routine is provided for hot deck imputation of missing values, this
restriction is inconvenient. Missing values occur in all surveys and in many situations it is more appropriate (and
simpler) to exclude items with missing values from the computations, than to always have to impute them using a
more or less arbitrary procedure.

Turning to Table 4C.(2) summarising analysis capabilities of the program, ‘Population Analysis’ refers o the
computation of sampling errors for aggregates, ratios and diffcrences of ratios for the total sample. This includes
standard errors, design effects and, except for differences of ratios, relative standard error and covariance matrix of
any specified set of estimates. 'Stratum Analysis’ refers 10 the decomposition of variance into within and between
stratum components. ‘Subpopulation Analysis’ means computation of sampling errors for subclasses defined by
crossing two or more classification characteristics. Sampling errors may be obtained for any set of ‘estimates under
the classification structure so defined; however the full covariance matrix is not produced.

The above capabilities meet the common requirements of sampling error computations in large-scale descriptive
surveys for complex statistics up to ratios, and in some cases, differences of ratios. A more distinguishing feature of
the program is the provision for some other analyses which include the following.

[1] Two Way Table Analysis refers to analysis by two classification variables and a dependent variable.
Tables of cell totals, of proportions based on row totals, and of proportions based on the grand total
are computed for each dependent variable specified. Standard errors are computed for all estimators
and a test statistic for the hypothesis of proportionality is obtained.

[2) Regression Analysis refers to the computation of weighted least squares regression coefficients, and
an estimated variance-covariance matrix which takes into account the sample design. Multiple degrees
of freedom F-tests for sets of coefficients and the usual test statistics are available, as is the option
of obtaining residuals and predicted values. '




TABLE 4C.(2). Main fcalures of PC-CARP.
(Sourcc: the distributor)

Versions of PC CARP

Machine

1BM PC/AT
with Math Co-Processor

[BM Personal Computer
with Math Co-Processor

IBM PC/XT

with Math Go-Processor

Analysis capabilities of PC CARP
Analysis

Population Analyses

Total Estimation

Ratio Estimation

Difference of Ratios
Stratum Analyses
Totals

Means

Proportions

Subpopulation Analyses

Totals

Means

Proportions

Ratios

other Apalyses

Two-Way Table

Regression

Univariate

Form of
PC CARP

1 High density
diskette

2 Douple density
diskettes

2 Double density

diskettes
Coeff. Cov. Design
of var matrix effect
X X X
X X X
X X
X X
X X
X X
X X
X X
X X
X X

X

X

X

Required
Memory

450K

410K

410K

Comments

50 variables maximum
50 variables maximum
without covariances,

15 with covariances

15 variables maximum

50 wvariables maximum
50 variables maximum
50 variables maximum

Crossed classif.
Multiple variables

Crossed classif.
Multiple variables

Crossed classif.
Multiple variables

Crossed classif.
Multiple variables

50 cells maximum,
proportionality test

50 variables maximum
Multiple d.f. tests
Y-hat, residuals

Multiple variables,
empirical CDF, quantiles
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[3] Univariate Analysis provides statistics describing the distribution of a variable over a specified
subpopulation. Estimates of the mean, variance, distribution function, quantiles and interquantile
range are produced.

[4] Some additional fcatures include the following: incorporation of the finite population correction
(assuming uniform or averaged sampling rates within strata); estimation of quantiles and their
standard errors; cstimation of a multivariate logistic model using an ilerative leasl squares algorithm;
and handling of post-stratification where the estimatcs have been adjusted to match known
population control totals.

CLUSTERS: A Package Program for the Computation of Sampling Errors for Clustered Samples. Version 3

A description of the program is available in Verma and Pearce (1986).

In terms of computer requirements, CLUSTERS is similar 10 PC CARP. It is available on IBM PC and compatibles
with math co-processor, is FORTRAN based, and uses the lineariscd method for variance cstimation. The program
was originally developed in the mid-Seventies and over the years has bcen madc available freely on request to
stalistical organisations and individual rcsearchers in many developing and devcloped countries. The new Version 3
was developed in 1985-86 t0 make the program more flexible and casier 10 use in certain respects, and above all, to
make it available on personal computers. Among other uses, Lthe program was used on a large scale L0 compute
sampling errors for all surveys in devcloping countrics conducted under the World Fertility Survey programme
(1972-1984), and more recently it has becn used systematically in devcloping country surveys conducted under the
Demographic and Health Surveys programme. The package has also becn used by countries for computing sampling
crrors for labour force and other household surveys.

The program is more limited than PC CARP in the range of analyscs performed. Instead, it is focused on the primary
lask of large-scale computation of sampling errors [or diverse siatistics over various subclasses and domains of the
sample. It includes flexible facilities for specification of parameters of the sample design relevant to the computations,
and also provides a useful set of recoding facilities for defining statistics and subclasses for which sampling errors are
to be computed. It handles missing values by appropriately excluding them from the computations. Several features
of the program which make it particularly suited for large scale computation of sampling errors in descriptive surveys
with complex designs are noted in Table 4C.(3).



TABLE 4C.(3). Some usclul features of clusters.
(Source: Verma, 1982)

1. Sample structure. The program computes sampling errors taking into account the actual sample design, in
particular clustering, stratification and weighting of the sample. There are no specific restrictions on the
design, except for the basic ones for the linearisation method, namely at least two independent primary
selections per stratum with replacement. (A limitation of the program is that the finite population correction
is always disregarded.) The program includes flexible facilities for specifying computing strata and primary
units, as well as specifying sample weights.

2. Data input and transforation. The program is designed to minimise the need to restructure or modify the data

prior to their use in the program. It has been extended to handle hierarchical data files which may contain
records for units at different levels such as households and individual persons. Data files may optionally be
described by an associated file called the "dictionary'; the program accesses the dictionary for information
on the variables. 1t is often necessary to recode input data before the required statistics can be computed.
For this purpose the program includes a set of useful recoding facilities which can define new variables by
combining or transforming one or more existing variables, exclude cases not belonging to specified categories
(subclasses), identify and deal with missing values, etc.

3. Handling diverse variables and subclasses. The program allows the specification of a set of variables and
a set of subclasses and then automatically proceeds to compute estimates and sampling errors for the whole
“variable by subclass' matrix, ie for each variable over the full set of subclasses specified. This is
convenient because in survey analysis often the same system of classification is relevant to all (or most)
survey variables. This feature reduces the work required in specification of the computations to be performed.
In computing sampling errors for a subclass, the program also computes sampling error for the dichotomous
variable defining the subclass, treating it as a characteristic distributed over the sample.

4. Subclass differences. The sample subclasses for which sampling errors are to be computed can be specified
in pairs. In that case CLUSTERS automatically calculates the difference and its standard error for each
subclass pair. A given subclass may, if desired, appear in more than one pair; moreover the subclasses in a
pair need not necessarily be non-overlapping or exhaustive.

5. Separate results for geographical domains. The entire set of calculations for variables over sample
subclasses and for differences between subclass pairs can be repeated for separate geographical domains in to
which the survey universe may have been divided. This repetition is extremely straightforward from the user's
point of view and does not involve much additional computer time. One restriction regarding this facility in
CLUSTERS is that the geographical regions must be non-overlapping and the sample must be selected independently

within each region.

6. Derived statistics. In addition to standard errors, the program produces related statistics such as
relative error, 95% confidence intervals, standard deviation, coefficient of variation, design effect (deft)

and rate of homogeneity (roh).

7. 1ype of estimators. The program is confined to the computation of errors for ‘descriptive' statistics
including proportions, percentages means and ratios of pairs of substantive variables. Differences of ratios
of the same characteristics defined over different subclasses are handled. These cover most types of statistics
commonly encountered in large-scale household surveys.

The main limitations of the program are that (i) it is not designed to provide directly information on variance
components; (ii) it does not handle more complex statistics than ratios and differences of ratios, statistics
such as double ratios or regressions which may be of interest in some surveys; (iii) it has no provision for
more sophisticated analyses, other than the basic task of efficiently computing sampling errors for descriptive
statistics on a large scale in multisubject surveys; and (iv) an unnecessary but inconvenient limitation of the
program in the present form is that it does not output sampling errors of simple aggregates.
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DECOMPOSITION OF THE TOTAL VARIANCE

5.1 INTRODUCTION

The concern in the discussion of Lhe variance estimation procedures in Part [ has been with estimaling the total
sampling variance. This concern is correct because in practical survey work Lhe first priority must be given Lo
computing overall variance of the diverse estimates produced. This information is essential for proper interpretation
and use of sample survey results. Analysis of Lhe total variance inlo components is a more complex and demanding
task. Nevertheless, il is necessary for survey design work Lo isolate, to the extenl possible, componenlts of the overall
variance which can be related Lo important featurcs of the design and to various slages of selection and estimation.

Detailed consideration of the complex topic of variance components is beyond the scope of this Technical Study. This
chapter considers the following sclected aspects, which are important in the analysis and use of the information on
sampling errors:

[1] Decomposition of the total variance of a survey estimator into the overall effect of the design (as
measured by the design effect, deft’), and what the variance would have been with a simple random
sample of clements of the same size.

[2] Decomposition of the dcsign effect into the contribution of haphazard or random weights, and the
overall effect of other complexities in the design.

[3] Identification of the effect of certain steps in the estimation procedure (post-stratification, ratio
adjustments, composite eslimation cic) on the variance of Lhe resulting statistics; in particular, of the
effect of variability of external weights, when the actual weighting factors applied depend on the results
obtained in the particular sample.
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[4]  Assessment of at least the approximate contribution of various sampling stages and the effect of
stratification at various levels.

[5] And a more formal analysis of the components of total variance by sampling stage in multistage designs.

In the above, [1] and [2] are no doubt the most important tasks as concerns practical survey work. Fortunately they
are also the ones most easily accomplished. Simple procedures are available for estimating the equivalent SRS
variance, from which deft can be computed given the variance of the actual sample. Simple and robust procedures
are also available for separating out in the design effect the contribution of random (but fixed) weights. Indeed, design
effects are routinely produced by most general purpose variance estimation programs such as CLUSTERS and
PC CARP described in Chapter 4.

Objective [4] can also be accomplished by using procedures similar to those for computing the overall design effect,
[1] - though here the procedures tend to be somewhat more approximate, more specific to details of the sample
structure, and more demanding in terms of the computational work involved. The linearisation method of variance
estimation described in Chapter 2 is perhaps the most suited for this type of analysis; this may also be the case for
objective [5]. -

Objective [3] can be important when the estimation procedures involved are complex and demanding in terms of the
time and effort required for their application. Generally, the repeated replication procedures described in Chapter 3
are better suited for this type of analysis.

Decomposition of the total variance by sampling stages, [5], is usually more difficult and complex. There are several
problems in cstimaling variance components by sampling stage. Thc decomposition of overall variance into
components involves complex procedures and grealtly incrcased computational work, and often the results obtained
are numerically unstable. Also, by their very nature, the computational procedures have to be more specific to detailed
featurcs of the sample design, making it difficult (0 establish common procedures applicable o different designs
encountered in practice.

5.2 THE DESIGN EFFECT, AND VARIANCE IN AN EQUIVALENT SRS

The standard error, se(y), for a siatistic (say a mean, y ) estimated from a complex sample is factored into two

parts each of which is discussed below:

sr(y), the standard error which would have been obtained in a simple random sample of the same size;

deft,  the design effect, defined as the ratio of the standard error for the actual design, to that for a

simple random sample of the same size:

. se0) ' 5.1
deft 6) (3.1)
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5.2 The Design Effect. and Variance in an Equivalent SRS

52.1 THE DESIGN EFFECT

The design effect (deft) is a summary measure of the effect of departures of the actual sample design from simple
random sampling of clements. It is a comprehensive measure which attempts to summarise the effect of various
complexities in the design, especially those due (o clustering, stratification and weighting. It may also incorporate the
cffects of ralio or regression estimation, doublc sampling, variable sampling rates, elc. In practical survey work,
departures from simple random sampling are introduced to reduce the cost of and improve control over field
operations. These benefits have (0 be weighed against the loss in sampling efficiency measured by deft. Deft is one
of the most commonly used and uscful measuresof efficiency of the sampling design; many samplers include it as a
routine item in the output of variance computation. Examples of defts from a number of developing countries were
given in [llustration 4A.

Since deft itself is a measure incorporalting the effect of various features of the design and estimation procedurc, it
may be decomposed further into components reflecting specific aspects of the design, such as the effect of weighting,
estimation procedures, cluster sizes and other features of the sample structure. These issues will be considered in the
following sections and in Chapter 6.

522 VARIANCE IN A SRS OF THE SAME SIZE; POPULATION VARIANCE
To compule the design effect, it is necessary Lo estimate
[{]  the variance under the actual design. Various practical procedures for this have been described in Part L

[2]  thevariance, for a given survey estimator, which would pertain in a simple random sample of the same
size.

How can [2] be accomplished, when the actual observations we have available are from the actual complex design,
rather than from a simple random sample of elements? Here is a point of great practical relevance: In most practical
samples the equivalent SRS variance can be cstimated well and simply from the sample observations. This is based
on a remarkable result of sampling theory that, from the results of a given complex sample, we can eslimate whal the
sampling error would have been in the hypothetical situation if certain complexities had not been present in Lhe actual
design. The procedure is simply Lo apply the computational method by assuming that the complexities concerned were
not present. The sampling error for an equivalent simple random sample of the same size - and hence the overall
design effect - can be estimated from the complex sample by applying to it the ordinary SRS variance estimation
formulae (see Technical Notc at the end of this section for some further discussion of the procedures). While this
is the clearest and mosL common application of the procedure, the idea can be extended to explore the effect of
particular features of the design; some possibilities are described in Section 5.5 and Tustrations 5C and D.
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5 Decomposition of the Total Variance

Some expressions for SRS Variance

We will first consider the estimation of equivalent SRS variance for a complex, bul self-weighting (‘epsem’) samplc.

[1] Means and Proporltions.

Assuming a simple random sample of size n with rcplacement, we have the well-known cxpression for the variance
of a sample mean:

var(y), = sr’Qy) = st (5:2)
n

where the subscripl ‘0’ is used to indicate simple random sampling, and

Zl: 0, (5.3)
=

n-1

st =

cslimales the variance between individual elements in the population

N —
,Z. (¥-n (5.4)
N-1

$? -

$* is called the population variance. lts square root, S (or its estimate s), is the standard deviation, as distinguished
from standard error, which measures Lhe variability of thc sample estimator rather than of individual elements in the
population. S? does not depend on the structure of the sample, but only on characteristics of elements in the
population. As mentioned above, in most practical samples, it can be estimated well and simply from the sample
observations irrespective of the complexity of the design, excepl for the effect of sample weights, as noted below.

(For simplicily, it is assumed in this section that the finite population correction is inapplicable, ncgligible, or can
be approprialely introduced in the expressions given here.)

For a proportion p, the expression for s’ takes the well-known form

s? =L p.(1-p) - pg;
n-1

2 -
var(p), = 37 = —p.r(ll—lp) - p_’:]; with g=1-p.
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5.2 The Design Effect, and Vanance in an Equivalent SRS
[2] Ratios

The concept of population variance can be extended to other, more complex Lypes of estimators as well, in so far as
it can be expressed in a form such as (5.4) involving quantities (like y)) defined at the level of individual elements (j).
For example, for a ratio R = Y/X, we have

52 = Y Z)/(N-1)

where Z is an auxiliary variable defined at the level of individual units as

Z, = (t; - RXYX

With r as the estimale of R from a sample of size n, S* is estimated from the sample values as

st = Ez}/(n-l), with z; = (yj—r.x,.)/f (5.6)

giving the SRS variance with ratio estimate as var(r), = s*/n, as before. In the above,
X=XN; x=x/n

are average values of the denominaltor in the ratio, for the total population and the sample respectively.

[3] Differences between Samples or Subclasses

Extension to differences between non-overlapping populations sampled independently is straightforward, but
somewhar more complex in the presence of overlaps. This is discusscd below in terms of differences of proportions.

If the proportions (p and p’) between two mutually exclusive groups (of size n and n’ respectively) are being
compared, variance of the differcnce is simply the sum of their individual variances

p(-p) ., p'(1-p)
n-1 n’-1

var(p-p’),

An example of the above is the coinparison of proportions of poor in two (mutually exclusive) socio-economic groups.
Sometimes Lhe interest is in comparing proportions according Lo two charactceristics in the same base population. If
the two proportions (numerators) arc mutually cxclusive - [or instance the proportion of volers voting for party A,
and the proportion voling for party A’ - then;

var(p-ply, = (@+p) - @-pY]

n-1
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where n is the size of SRS drawn from the common base population to estimate the proportions. This follows from
the observation that

var(p-p"), = var(p) + var(p) - 2.con(pp’)

and for mutually exclusive proportions with a common base, cov(p,p’) = -p.p’/(n-1).

When the two proportions overlap, the above is modified Lo

[e+p’-2.0") - (@-P)]

n-1

var(p-p’),

where p" is the overlap between proportions p and p'.

Weighted Samples

When the actual samplc observations have been weighted, the expressions for estimating the variance (without the
clfect of weights on it) for a simple random sample of the same size have to be modified with the weights. With w,
as the weights for individual clements (j), we have for cxample for a mean

LY o XywOP (5.7)

Ej v, ' n-1 Ej ¥,

y

Fora propbrtion p, the above expression applics, with y; defined appropriately as a dichotomous variable p, (=0 or 1):

Note that the form of s* for a proportion is identical to that for the unweighted case; the only difference is that p
itsell is estimated with the weights.

More generally, for a ratio we have

2
_ XM 2= N _Ei "% (5.8)

with
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Exprcssions of the above form for s* can also be applied to other more complex statistics with z, appropriately defined.
This extension is based on the linearisation procedure described in Chapter 2.

A most important point is that though weights appear in the above expressions for s°, the quantity it estimates is the
(unweighted) population value S°, and hence the sampling variance estimated by s*/n still refers o a selfweighting
simple random sample of the same sizc (n) as the actual sample. The cffect of weighting is of course incorporated
into the variance for the actual design computed using the procedures described in Chapters 2 and 3, and hence into
the design effect defined from the above. Separation of the effect of weighting from the overall design effcct is
discussed in Section 5.3.

A Note on Terminology

By convention, the term ‘dcsign effect’ is used both for the ratio of actual 1o SRS variances, and for its squarc-root,
ie the ratio of the standard errors. To avoid confusion where necessary, we use ‘deft when the reference is to Lhe
ratio of variances, and ‘deft’ for the ratio of standard errors. ‘Defl’ has also bcen uscd in place of del(?, though now
this usage is less common; however, a subtle distinction has somelimes been drawn between the two in the sense that
the denominator in the case of deff does not include the finile population correction (fpc), while that in deff® does.
The numerator (the variance of the actual sample) in either case is meant to include the fpc approprialcly.

Some authors have preferred (o reserve the term ‘design effect’ for Lhe ratio of variances, and have uscd the term
‘design factor’ 1o refer to the ratio of standard errors.

5.23 TECHNICAL NOTE ON ESTIMATING SRS VARIANCE FROM A COMPLEX DESIGN

The objective of this note is to give a clearcr understanding of the procedure described above for estimating the SRS
variance from data obtained from a complex sample. Its basis follows from what has been called the ‘argument of
symmetry' (Cochran, 1973; Sec. 2.3). Consider for example a self-weighting sample of any design. Since each clement
in the population has the same chance of being selecled into any sample, every unit in the population appcars cxactly
the same number of times when the collectivity of all possible samples is considered. This implics that the mean per
element of all possible samples (which by definition is the expected value of the sample estimator) is the samc as the
mean per clement in the population, giving the well-known result that the sample mean provides an unbiased estimate
of the population mean: '

EG) = Y

The point is that the above applies not only 1o a particular variable, but (o any variables dcfined in terms of individual
values, such as 2 =y, yf, ¥,X, etc, bul withoul involving cross-products of values for differcnt elements. (The
argument of symmetry does not apply to cross-products, because complexity of the design affects the probability with
which any particular combination of elements appears in the samples.) The above also applies to quantitics like
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5 Decomposition of the Total Variance
O - Y)* or O - R.x}.)’, where ¥ and R are constant (population) parameters. With a reasonably large sample

size, it also applies with generally only a slight approximation to quantities like (y; - 3)* or (y, - rx)? with the

population parameters replaced by their sample values. On this basis s* estimates S?, ie E(s*) = S?, irrespective of the
complexity of the design. It can be established that the actual relationship is

Esh) = 2

N-lg_ Va:(j)J (59)
n-1

N

in which the second term on the right is of the order of (1/n) compared to the first, ie usually negligible by
comparison. For a simple random sample without replacement, we have the equality E(s?)=S* since

2 . . . 2 - .
Var(y)=(1 —%).s—. In a complex design, s’ slightly underestimates S* in so far as the complexity increases the negative
n
variance term on the right hand side.

The argument is easily extended to the general case of a complex sample when the individual elements are weighied
inversely proportional to their respective probabilities of selection. The argument of symmetry goes as follows. If p,
is the probability of selection of an element j, then the number of times it appears when all possible samplcs are
considered is proportional to p. Now if the contribution of each element to all possible samples (ie, Lo the expected
value) is divided by its p; ( ie, multiplicd by its inverse, w), the result is that the "effeclive" number of appearances
when all possible samples are considercd is the same for all clements in the population. This means that any functions
of individual values of the type noted above, which involve individual values bul not cross-products across different
elements, is weighted by w; 10 estimate the corresponding population parameter. From this expressions like (5.7) and
(5.8) follow.

5.3 THE EFFECT OF UNEQUAL WEIGHTS

In many surveys the objective is to produce estimates at various levels of aggregation such as at the national as well
as subnational levels. Comparisons among subnational estimates are also required. The different objectives results
in conflicts requiring compromises in sample allocation. For any given objective, the compromise allocation essentially
represents "random” weighting, the effect of which is to inflate the variance for that objective. The important thing
is that unequal weights tend to affect (inflate) the variance of all estimates for different variables over different
subclasses in a rather uniform way, independently of the structure of the sample except for weighting itself. Herein
lies the practical utility of isolating this effect. Its magnitudc has been expressed in very simple equivalent forms (Kish
1965, p427, and 1989, p183; the original author uses the symbol (1+L) for the quantity denoted by D, here):
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5.3 The Effect of Unequal Weights

X ny, LA (5.10)

W,
D}, = w,w).Y (—) = :
ADILA NG 3 o n

with n=3Y n; Y W,=1

D, is the factor by which standard error is inflated due to random weighting. In the above, w, are the weights, uniform
for the n, units in stratum h; and W, are the relative sizes of the strata in the population. The three forms in the
equation are equivalent since weights w, are generally taken to be inversely proportional to the sampling rates,

f, = 0N, = n/(N.W,).

The above can also be written in terms of the coeflicient of variation of the weights as

2
D% - ——:g’ “';I, =1 +'cv2(w,) (5.11)
w)?
p)

where

2wy = 1 _D\2 -
cviw) = n.Wz.E’ w-w? W=

A more precise expression for the loss factor estimated for a ratio r=y/ and with weights varying generally at the
level of individual units is

D% - nY, o) (5.12)

T Wy

where

Ilustration SA demonstrates the computation of Dy, the design effect due to weighting using (5.10). Illustration 6F
gives several examples showing that this effect tends to be similar for diverse variables and subclasses.

103



5 Decomposition of the Total Variance

ILLUSTRATION 5A THE EFFECT OF ARBITRARY WEIGHTS ON VARIANCE

Table SA.(1) shows the relative weights applicd in samples from some developing countries. (The example is taken
from the Demographic and Health Surveys programme.) Each sample was essentially self-weighting within each of
a number of major geographical domains in the country, but weighted across the domains. The table shows the sample
size (n,) and the relative weight (w,) for each domain. (For convenience, the weights have been scaled such that the
average value is 1.0.) The last two columns show the increase in the sampling error due to weighting for estimates
produced at the national level, computed on the basis of equation (5.10). These factors apply essentially unchanged
to all variables estimated at the national level, as well as 1o estimates over cross-classes which are distributed across
the gcographical domains. For estimates produced al the domain level, there is of course no effect due 1o weighting
because the samples are self-weighting within domains.

TABLE 5A.(1) Computing the effcct of arbitrary wcights on variance.
(Sourcc: Aliaga and Verma, 1991)

weighting domain Loss factor
1 2 34 5 6 7 8 D, D
UGANDA
m, 964 128 689 1108 132 1289 420 - 1.16 1.08

Wy 0.56 1.83 1.68 0.94 1.83 0.97 0.62 -

BOTSWANA
n, 2258 2110 1.19  1.09
" 0.58 1.45

DOMINICAN REPUBLIC

n, 1336 631 1302 891 926 758 1016 789 1.35 1.16
Wy 2.09 0.71 1.39 0.91 0.43 0.66 0.55 0.45

BRAZIL
n, 749 769  B47 1029 1794 709 1.12 1.06

W, 0.82 1.69 1.35 0.89 0.88 0.48
EGYPT

n, 272 246 M6 279 286 8621 1.05 1.03
Wy 0.27 0.22 0.35 0.56 0.55 1.08
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5.3 The Effect of Unequal Weights

Table 5SA.(2) shows the effect of weights on the overall (total sample) defts. The first panel shows the actual defts,
including the effect of weighting. The values have been averaged over groups of subslantively similar variablcs. The
variables and the groups were defined in Table 4A.(3) in the previous chapter. Defi values for individual variables
was shown in Table 4A.(4). As explained in Chapler 6, such averaging is often necessary and uscful.

The second panel of the Lable shows what the total sample design effects would have been in the absence of weighting
which inflates the variance; that is, the figures shown are the actual deft values from the first panel, divided by the

loss factor D, for the design from Table SA.(1). For certain countries the values in the two panels are the same
because the samples involved were self-weighting; these are the countries shown in this table, but not in 5A.(1).

TABLE 5A_(2). Examples of the elfect of weighting on deft valucs.

(i) Deft values averaged over groups of variables

country
GHANA UGANDA DOMINICAN REP BRAZIL ECUADOR KENYA
Z1MBABWE BOTSKANA PERU EGYPT SENEGAL THAILAND

var 1 2 3 4 5 6 7 8 9 10 1 12
group

1 1.15 1.06 1.19 1.25 1.28 1.12 1.26 1.40 1.26 1.32 1.46 1.72
2 1.33 1,19 1.23 1.51 1.31 1.12 1.51 1.64 1.23 1.35 1.65
3 1.57 1.22 1.14 1.34 1.21 1.20 1.31 1.42 1.08 1.3¢ 1.59 1.7
[A 1.84 .1.20 1.52 1.87 1.27 1.34 1.26 1.91 1.65 1.61 2.00 1.82
5 1.31 1.09 1.17 1.25 1.10 1.07 1.15 1.23 1.14 1.16 1.30 1.37
6 1.56 1.58 1.69 1.64 1.86 1.40 2.28 2.76 1.69 2.02 2.01 2.10
altt 1.41 1.18 1.29 1.48 1.30 1.18 1.29 1.67 1.37 1.39 1.55 1.69

Dy 1.00 1.00 1.08 1.09 1.16 1.00 1.06 1.03 1.00 1.00 1.28 1.22

¢ii) Deft values after removing the effect of arbitrary weights

1 1.15 1.04 1.10 1.15 1.10 1.12 1.19 1.36 1.26 1.32 1.15 1.41
2 1.33 1.19 1,15 1.39 1.13 1.12 1.47 1.64 1.23 1.06 1.36
3 1.57 1.22 1.06 1.23 1.05 1.20 1.26 1.38 1.08 1.34 1.26 1.40
4 1.84 1.20 1.41 1.71 1.10 1.34 1.17 1.87 1.65 1.61 1.57 1.49
5 1.31 1.09 1.08 1.15 0.9 1.07 1.08 1.20 7.14¢ 1.16 1.02 1.13
6 1.56 1.58 1.57 1.50 1.60 1.40 2.16 2.69 1.69 2.02 1.58 1.73
all 1.41 1.18 1.20 1.36 1.12 1.18 1.21 1.3 1.37 1.39 1.22 1.39
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5 Decomposition of the Total Vanance

5.4 THE EFFECT OF VARIABILITY IN THE ESTIMATION WEIGHTS

The issue of variable weights should be distinguished from essentially random but fixed weights considered in the
preceding section. ‘

Sample data may be weighted for various reasons in estimating the population parameters. Apart from differences
in selection probabilities, weighting may be introduced for nonresponse, post-stratification or ratio adjustments. While
usually the main objective of weighting is to control bias, weights which randomly depend on the particular units
which happen to be selected may also affect the variance of the estimates. For instance, post-stratification or ratio
weights often reduce the variance while nonresponsc adjustment weights tend Lo inflate it. The effect of weights
treated as conslanls is automaltically incorporaled into the variance estimation procedures described in Part [
However the treatment of weights variability in variance estimation requircs special considerations.

The method of linearisation is difficult 10 adapt (o take inlo account the contribution of variable weights. The
repeated replication methods are more suited for the purposc. In the production of replicated estimaltes, Lhe weights
may be introduced in one of the following two forms: '

[1]  acommon set of weights computed from the full sample and applied to all the replications; or
[2]  weights compuled and applied separalely for each replication, using a common procedure.

Procedure [2] takes into account the effect of weight variability, but [1] does not. Their comparison will show the
imporiance of 1his effect. 1deally [2] should be uscd in variance estimation, but il can be much more cosLly in terms
of the computations involved. When the effect of weight variability is not important, the more economical procedure
[1] will suffice. In that case, of course, Lhe lincarisation method can also be used in place of repeated replication,
unless the latter is preferred in view of the complexity of the statistics involved. In practice it is also possible Lo use
a combination of [1] and [2]: using procedurc [2] for steps in the estimation procedure where the contribution of
weight variability is important and/or can be handled without 0o much additional computational work, and using [1]
in the remaining steps. Several examples ol the approach are given in the following illustration.

ILLUSTRATION 5B MAGNITUDE OF THE EFFECT OF VARIABLE WEIGHTS

Several investigations have shown that in many situations the cffect of weight variability on variance is not important.
For example Kish and Frankel (1970) compulced variances of sevcral lypes of statistics using the BRR method. Some
results are shown in Table 5B.(1). Column (4) in the table shows the factor by which the standard error is changed
when the effect of weight variabilily is taken into account. The factors are mostly close to 1.0, indicating a mere 2-3%
increase in standard error or 5-6% increase in variance due to weight variability. Similarly small effects have been
reported by Rust (1987), as shown in Table 5B.(2). However, the same author also reports a case with striking
reduction in the estimated variance when weight variability was taken inlo account by computing the weights
separately for each replication, using in this example the BRR method. Some results along with a brief commentary
are shown in Table 5B.(3). The [igures for the linearisation method in the table do not take this effect into account.
The dilferences between the two estimates are marked. Such strong eflects of weight variability may be present when
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5.4 The Effect of Vanability in the Estimation Weights

the post-stratification variables are highly correlated with the substantive variables being estimated, so that the use
of ‘correct’ weights in each replication makes a significant difference to the precision of the estimates produced.

TABLE 5B.(1). An example of negligibly small effect of the variability in weights.
(Source: Kish and Frankel, 1970)

AVERAGE VALUES OF ~/DEFF FOR SEVERAL STATISTICS
FROM 16 REGRESSIONS, WITH DIFFERENT PREDICTANDS
FROM SAME 3 PREDICTORS

ol [ 2)b o (4)
Statistic (1) (2) 3) —2)+(3)
Ratio means 18 1.7998 1.7549 1.0256
Simple correlationy 51 1.2616 1.2802 0.9855
Partial correlations 48 1.3995 1.3487 1.0377
Multiple IV 16 1.4653 1.4217 1.0307
Regression coefhicients 48 1.2948 1.2668 1.0221

8 (1) =number of diffcrent statisties averaged in Columns (2) and (3).
b (2) =average values of v/deff with correct weighting system.
© (3) =averago values of +/defl with wpproximate weigliting system.
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5 Decomposition of the Total Variance

TABLE 5B.(2). Another example of small effect on variances of the variability in sample weights.
(Source: Rust, 1987)

BRR estimates of coefficients of variation for the Title IV Quality Control Study - Pell
Grant Awards

Incorporating Ignoring
sampling sampling
variation variation

Parameter Subgroup in weights in weights
Total absolute error All students . .107 117
Indep. students .289 .280
Dep. students .082 . .094
Pell Grant only 235 .237
Total overpayment All students .060 .073
Indep. students 116 122
Dep. students .059 .070
Pell Grant only 137 146
Mean error per All students 110 110
student with error Indep swdents 290 277
Dep. students .080 .080
Pell Grant only 214 .210
Proportion with . Allstudents .030 .029
crror Indep. students .046 .047
Dep. students .034 .033
Pell Grant only 056 - .055
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5.4 The Effecl of Variabilily in the Estimation Weights

TABLE 5B.(3). An examplc of large effect on variances of the variability in sample weights.
(Source: Rust, 1987)

Comparison of BRR and "simple" linearization estimates of design effect for Hispanic
HANES (from Lago et al. (1987)).

Statistic
Mean weight Mean height Mean cholesterol
Subgroup BRR |Linearizaion | BRR Linearization | BRR Linearization

All persons 0.64 2.3 1.20 3.59 0.65 1.49
All males 0.47 1.38 0.58 2.20 0.96 1.14
All females 0.56 1.93 1.01 3.03 0.63 1.03
Male 45-54 0.60 0.59 1.66 1.36 1.68 1.66
Female 25-34 0.63 0.60 2.78 2.78 1.16 1.16

As part of a broadcr study, a similar investigation has been undertaken for estimates for
the Mexican American component of the Hispanic Health and Nutrition Examination Survey
(HHANES) conducted for the U.S. National Center for Health Statistics (Lago er al. (1987)).
Variance estimates using BRR, incorporating sampling variation in poststratification weights,
were compared with those obtained from linearization, with the effect of poststratification on
variance ignored. Poststrata were formed on the basis of age and sex. Little difference was found
for most parameters, but for three statistics, mean weight, mean height and mean cholesterol level,
the estimated design effects from linearization were several fold those from BRR for whole
population estimates (see Table ). These variables (weight, height and level of cholesterol) are
highly correlated with age and sex, the poststratification variables, so that the use of
poststratification gave rise to considerable reduction in sampling variance. In failing to reflect
this, the method of linearization used gave gross overestimates of sampling error. The table
shows that the differences between the two methods disappear for estimates for specific age-sex
cells, where the use of poststratification has no effect on the precision of estimation.
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5 Decomposition of the Total Variance

5.5 EXPLORING THE EFFECT OF SAMPLING STAGES AND STRATIFICATION

While accurate computation of variance components by stages in a multistage design can be complex (as considered
in the next section), the general methods described in Section 5.2 can be adapted to yield reasonable approximations
in many situations for the effect of certain features of the design, such as that of one or more of the highest stages
of sampling or that of stratification at various levels.

This approach is based on the result of sampling theory (noted in Sec 5.2.3) that, from the observations from a given
complex sample, we can estimate what the sampling error would have been in the hypothetical situation with some
complexitics of the design removed. For example to investigate the effect of the first stage in a multi-stage design,
the procedure is to apply the computational method by assuming that the highest stage concerned was not present,
that is, as if the second stage units in the sample had been selected directly as the PSUs. Similarly, we can investigate
the combined effect of the two highest stages by taking the third stage units as the PSUs for the computation of
sampling errors. In the extreme casc, all stages excepl the ultimate (as well as other complexities of the design) are
assumed absent Lo estimate the overall design effect, as done in Sec. 5.2.

Consider, for instance, a design with three area stages (say countics, communcs, villages) followed by sampling of
households. By regarding this as a single stage sample of households, we estimate the variance (v,) of a SRS of the
same size. Variance (v;) compuled by considering villages as the PSUs gives the relative increase (vi/v,) due to the
clustering of sample houscholds into villages. Similarly, computation with communes treated as the PSUs gives
variance v,, and with countics as the PSUs gives variance v, of the actual design. The ratio v.pv, is the cffect of
clustering sample villages inlo communes, and v, is the effcct of the clustering of the communes inlo counties.

A similar procedure can be used to investigale the clfectiveness of stratification in improving the efficiency of the
design. Variances compuled for the actual stratificd design can be compared with those computed by disregarding
stratification. Indeed, Lhe two ideas can be applicd in combination: the effect of stratification at various levels (stages)
can be investigated by comparing the computations, with and without stratification taken into account, for the sample
with the actual number of stages, or with onc¢ or more of the highest stages removed. The linearisation method of
Section 2.2 is usually the most suited for such analysis. Examples of application of these procedures are given in
llustration 5C.

ILLUSTRATION 5C SOME EXAMPLES OF THE EFFECTS OF SAMPLING
STAGES AND STRATIFICATION.

The Effect of Sampling Stages

Table 5C.(1) provides some numerical results on variance components from three samples used in national fertility
surveys in Thailand, Colombia and Nepal (Verma el al, 1980).
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5.5 Exploring the Effect of Sampling Stages and Stratificalion

In Thailand (Rural), the sample consisted of a design with four stages. Changwat (provinces), which are large units
averaging over hall a million in population, served as the PSUs; Amphoe (communes) as the second stage unils
(8SUs); villages as the third stage unils; and households as the ultimate units of sampling. (The total number of units
selected at the four stages were 37, 78, 234 and 3240 respectively.) Generally, area units al various stages were selecled
with sysicmatic PPS aller geographical and administrative stratification, and the final sample of houscholds and
women was approximately self-wcighting. To investigatc the effect of the three area stages, four sets of computations
werc made for each of a large number of variables over the total sample and various subclasses. The variables
concerned fertilily and associated factors such as marriage and contraception.

In the table, the results shown are averaged over groups of similar variables. For each statistic, the four variances
computed were: v, for an equivalent simple random sample of Lhc same size; v, for a design with one area sluge
(villages as the PSUSs); v, for a design with two area stages (communes as PSUs and villages as SSUs); and v, for the
actual design with (hree arca stages. The quantitics S1, S2 and 83 shown in he lable are square-roots of the ratios
ViV, v, and vyfv, respectively. Here S1 is the design effect (deft) for the hypothetical design with one area stage
(villages as PSUs); S2 stands for deft lor the design with two area siages (communes as PSUs), and S3 for dell for
the actual design with three arca stages. Thus due to the clustering of households and women within villages, the
standard error is inflated by the factor S1; it is further inflated by the factor S2/S1 due Lo the clustering of villages
into communcs, and by S3/S2 due to the clustering of communes into provinces. The relative contribution of stapes
varied by naturc ol the variable; also the increase due 10 higher slages was generally smaller for subclasses than for
the total sample.

The three stage sample ol Colombia (Rural) consisted of a relatively small number (35) of rather large PSUs, from
each of which a large number of small units (clusters) were selected as the SSUs, and finally an average of only 3.2
women per cluster were selecled at the last stage. Results are shown [or the same sel of variables as for Thailund and
Nepal. As a rcsult of the above design, most of the increase in standard error over SRS comes [rom the first stage,
ie clustering of SSUs into sample PSUs: the overall average ol S2/S1 for all variables over the wotal sample is 1.6,
indicating an increase in variance by a factor (S2/S1)? of over 2.5. The impact was less marked when cstimates over
subclasscs were considercd.

The sample for Nepal was more complicated and more heavily clustecred due to difficult travel conditions in the
country. Only 7 blocks were selecled in the urban seclor in a single stage. In the rural sector, which comprised 96%
of the total sample, 33 districts (PSUs) were selecled followed by 2 panchayats per sample districl. From 66 sample
panchayals, usually only one bul sometimes two and occasionally thrce wards were selecled, resulling in a sample of
95 rural wards. The results in Table 5C.(1) were computed by regarding the design as a two stage sample, with 40
PSUs (7 urban blocks and 33 rural districts) and 102 SSUs (7 urban blocks and 95 rural wards). Therc was no
subsampling within SSUs, from which a total of nearly 6000 women were intervicwed. Hence the sample consisted
of relatively large compact clusters, themselves clustered into a small number of PSUs. Conscquently there is a large
effect of clustering on the sampling error, with viv, = S = 3.0 due to clustering of women within SSUs, and [urther
increase by a factor (S2/S1)” = (1.36)* = 1.85 due Lo clustering of the SSUs. Again, Lhese effects were greatly reduced
for estimates for subclasses such as particular age groups, and especially for small subclasses such as women with
higher education.
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5 Decomposition of the Total Variance

The Effectiveness of Stratification.

Stratification is a more powerful instrument for controlling variance in multistage samples than in random samples
of elements. In addition to the control and flexibility in design offered by stratification, the gains in precision tend
lo be greater when sampling clusters. Also the more marked the effect of clustering, often the more marked is the
proportionate gain due to stratification. To estimate the effect of stratification, a procedure similar to the above can
be followed: the actual sampling error can be compared with the (generally increased) error which would be obtained
if the unils were not stratified. The latter is computed by simply ignoring the actual stratification of the design.
Clearly, the linearisation method (Chapter 2) is the appropriate one for this purpose. It is the stratification at the
first stage (‘primary stratification’) which is the most important in many designs. Table 5C.(2) shows some results from
a number of national fertility surveys (Verma et al, 1980). To illustrate the effect of stratification for designs with
different numbers of stages, and for the total sample and subclasses, the tablc shows the ratio of two quantities

S, the standard error computed with actual stratification for a design with j area stages; and

U, the standard crror computed by ignoring the primary stratification in the design with j area stages.

Cases where j shown is smaller than the actual number of area stages in the design mcan that the lowest j area stages
only were considered in the compuiations. 'Primary stratification’ always refers to the stratification of the actual PSUs.
Thus in a design with 3 area stages, S3/U3 is the proportionate reduction in standard error obtained by the
stratification of the PSUs; S2/U2 is the reduction in a hypothetical design with the lowest (wo area stages only; and
similarly S1/U1 is the reduction in a design with a single arca stage where in computing S1 the lirst two stages arc
ignored, and in computing Ul the stratification of the actual PSUs is also ignored. Generally the results show
increasing effect of stratification with increasing number of sampling stages. These effects are less marked for
subclasses of the type shown than for results over the total sample.

5.6 COMPONENTS OF VARIANCE BY SAMPLING STAGE

The information in the preceding illustration can also be presented in the more conventional form of additive
components of variance attributed to the various stages of sampling. Such an analysis of variance into components
is the topic of this section. As noted in Section 5.1, the decomposition of overall variance into components involves
complex procedures, which need Lo be more specific (o detailed leatures of the sample design. Often the results
obtained are numerically unstable. For these reasons, the (reatment in this section is selective and relatively brief.

For specificity, consider the estimation of a ratio from a general three stage stratilied design, with sampling without
replacement at all stages. The objective is 10 decompose the overall variance V into three components by stage and
estinate these componcents from the sample.

VeV, +V,+ V. = 3 Vy+Vy+ V) = I (5-13)

V, is the between-PSU component, V, is the component between SSUs within PSUs and V, is thec component
between ultimalte units within SSUs. Each component may be decomposed into subcomponents by stratum as done
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5.6 Components of Variance by Sampling Stage
in the second part of (5.13). Subscripts h, i, j and k are used to denote primary strata, PSUs, SSUs and USUs

respectively. Thus with w as the sample weights, the ratio of two aggregates y and x is estimated as

D DLV (5.14)
X

E Wik Thijk
where the summation is over all k, j, i and h in turn. As described in Section 2.2, var(r) can be expressed in terms

of an auxiliary variable z defined as follows:

T = Whge O - ’-J‘u,t)/x ,

Ty = Dy Twgpo Cni = Z, i Zh = ), e

The following treatment is based on Kish (1965; section 8.65). Variations in sampling rates in different parts of the
sample complicate the estimation formulae greatly. To begin with we assume that within each stratum the sampling
rates are uniform at each stage (f, f., f,.), or that values appropriately averaged (o the stratum level can be used.

Define the following sample quantitics

Via = (1_f’w)'[a:f1'(Ezzl2u - z,z,/ah)]; (3.16)
Yo = (l_fhb)'z,' b:‘_‘l-(z, ZZU - Z:thi)]; (517)
e = GAIE T8, - ) (518

A T T Eh v, (5.19)

In the above, a, b and c refer to the number of units selected at the first, second and third stages respectively. It can
be shown that v estimates variance V of the ratio r, and the relationship between the above sample quantities and
the required variance components in (5.13) is as follows. '



5 Decomposition of the Tolal Variance

VARIANCE COMPONENT: ESTIMATED BY

@ Vg Vi

(@) Vi Vg - (1-f)v,,

(i) Vi, Via = £y~ fipVad
) V, = Vit VitV Via * SaaVis * s Ve
™ V=Y, 6V v.

The first three may be summed over h Lo oblain estimates V,, V,, and V.. Note that (iv) is a more precise expression
than the one given in equation 2.13, Seclion 2.2. The former takes into accounl the withoul-replacement character
of sampling, while the larter assumes sampling with replacement at all stages except the last. It can be seen Lhat the
procedure in Section 2.2 amounts to estimaling V, by:

@t = a2 d - e - [2

where f, is the uniform overall sampling rate in the strata:

f’, = fhf).b:fl,c

In most practical situations in national survcys, the sampling rates are small and (iv) and (iv)’ do nol differ
significantly, the latler usually providing a slight overestimation. The great difference between Lhe two is that (iv)’
is much simpler as it only involves quantities aggregated to the PSU level, and complexilies of subsampling within
PSUs do not appear in the computational formulac. It is for this reason that (iv)’ forms the basis of a general method
applicablc o diverse designs. (See also the particular case discussed in Section 2.5.)

Instability of the sample estimates of various quantitics above is a real practical problem in decomposition of
variances into slages. If al each stage, the sampling rate is uniform across all strata (or a suitable average value can
be used), then one may aggregate quantilies like v, across strata before using them to eslimale the variance
components. For instance, in place of (iii) we have

@V, = Y v~ O, Vi ~ oDy Vad) (5:20)

Another point worth mentioning is that in most practical designs area units are selected with PPS, so that the
assumption of uniform sampling rates within or across strata is not valid. However, il is reasonable to take the
following uniform value in such a siluation:

effective sampling rate (ar a given stage, in a particular stratum if applicable)

Z(measure of size of the units selected with pps)

total measure of size of all units in the population
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DATA REDUCTION AND MODELLING

6.1 OBJECTIVES

The typically large number of estimates produced in national household surveys raised two basic issues: how to be
economical and selcective in undertaking the sampling error computations for the required statistics; and how to
summarise, analyse and make the best use of the information resulting from the computations. The first issue was
considercd in Chapter 4 and the second is the topic of Chapter 7. This chapter is concerned with the relationship
between the two, developing further some ideas introduced in Chapter 5. The above mentioned two issues are closely
related because both are served by exploration of the patiern of variation of sampling errors for diverse statistics. This
exploration requires data reduction and modelling of the relationships beiween mcasures of sampling error over
different statistics computed over diverse population bases. By 'dalta reduction’ we mean removing superficial details
and variability [rom numeric data, appropriately amalgamating them, and computing various measures summarising
their essential features, so as to identify patterns and relationships that exist in the data. "Modelling’ means describing
and generalizing these patterns and rclationships in concisc, possibly analytical, forms. Data reduction and modelling
have several inter-related objectives in the conlext of sampling error analysis.

[1] Limiting the Volume of Computations.

As discussed in Chapter 4, generally it is not possible (nor often necessary or useful) 1o compute sampling errors for
each and every of the hundreds or thousands of estimates produced in a survey. However, a proper selection can be
made only on the basis of an investigation of patterns of similarities and differences in sampling errors for diverse
statistics. For instance, groups of similar variables and similar subpopulations need to be identified so that
compuiations, while aiming to cover the diversc groups (o the maximum extent possible, can be limited within each
group without 100 much loss in the information generaicd.



6 Data Reduction and Modelling

[2] Summarisation

Even when sampling errors for a large number of estimates can be computed, it is not possible to present them all
in survey reports. Rather than arbitrarily taking a few statistics for publication, it is much better to analyse the data
and extract more concise measures describing their essential features for publication. Apart from reduction in volume
of the data to be published, there are also more positive reasons for averaging or summarising the information. One
important consideration is that sampling error estimates from survey data are themselves subject to variability. This
variability can be particularly large if the computations are¢ based on samples with a small number of primary units
(Section 4.4.5). In fact, it is often preferable to usc results appropriately averaged over a number of computations,
than 1o rely on the precision of individual computations.

Summarisation is often dcsirable from the users’ point of view as well. Masses of figures are less useful than simple
concise presentations [rom which the required information can bc extracted more easily, even if there is some loss
of information in the process. While one should aim at providing the user of survey results with all the required
information on sampling errors, it is cssential to do so in a way that is convenient for the uscr and that does not
obscure the substantive results of the survey, which are after all the primary interest.

Another consideration is that information on sampling errors is not rcquired with the same degree of precision as
the information on substantive estimatcs from the survey. Indeed, too much should not be madc of the precise limits
of the confidcnce intervals. For many purposes it is suflicient to have approximate information on the magnitude of
thc error; morc precise information is relcvant only where it alfects the interpretation of the survey results and the
conclusions which are drawn from them. As cmphasised in Chapter 1, it should be remembered that sampling crror
is only one component of the totat error which affects the survey results, and that ofien very limited information is
available on the othcer components.

13] Extrapolation

ldcally the user of survey results should be ablc to obtain at lcast approximate values of the standard error for all
estimates derived [rom the survey, including individual cells in detailed cross-tabulation of the survey results and
dilfcrences and distributions across cells. Since actual computations cannot be made for all these cstimates, it is
necessary to establish some means of extrapolation of errors from computations actually made to estimates for which
errors have not been computed. Several types of extrapolations may be involved: across diverse subclasses of the
sample for a given variablc or statistic; across dilfcrent types of slatistics (such as totals and means for the same
variable); across differcnt substantive variables; and even across diflerent surveys.

1. Subclasses and differences. The number of subclasses and cspecially subclass differences of interest in a survey
may be exiremely large. Hence one of the most important requirements is to be able to extrapolate computed
sampling errors (for each variable or statistic) from the total sample to subclasses, across subclasses, and from
subclasses to subclass differences. Idcally onc would want to be able to generate sampling error for any subclass
and any comparison of subclasses in the sample. The pattern may differ by subclass type, such as classes defined
in terms of individual characteristics which are distributed over the sample areas, and gecographic domains or other
aggregates of sample arcas.

2. Types of siatistics. Extrapolations may also be needed [rom one type of stalistic to another for a given variable:
for example from proportions Lo estimaltes of total counis; [rom the more easily estimated sampling error for the

118



6.1 Objectives

mean to that for the median; or [rom simple statistics like differences of means to more complex statistics like
regression coefticients.

3. Variables. Extrapolation across substanlive variables is usually more difficult. Though less eommon, it is
sometlimes useful and necessary. It is more difficult because different variables often have major differences in their
sampling errors. Such extrapolations are less commonly requircd because in many surveys the actual number of
important variables of interest is often not large - at least in comparison with the numerous subclasses and
subclass dilferences (Section 4.2.2). Nevertheless, many surveys involve groups of similar irariables, and it can be
useful to average and/or extrapolate sampling error results within such groups.

4. Surveys or survey rounds. Finally there is the rcquirement of extrapolation across surveys. In a continuing or
multi-round survey, the patiern of sampling error results is usually quile stable, and it is possible as well as
desirable to pool together and extrapolate sampling error information across survey rounds. Generally, however,
extrapolation across surveys can be more dilficult than within surveys because of dilferences between survey
conditions, designs, liming, population covercd, etc. Nevertheless, such extrapolation is necessary when errors for
a survey cannot be compuled for some reason; in any case, it is unavoidable [or the design of future surveys.

[4] Samplc Dcsign and Evaluation

Apart [rom indicating the reliability ol existing survey estimales, an equally important objeclive of sampling error
information is to cvaluate how a particular design has fared and to provide data for the design of future surveys. In
conlinuing survey programmes, rcdesign and improvemcnl of existing samples is also a major concern. In redesign
work many of the basic conditions and objectives of the survey often remain unchanged, and the [ocus is on
identifying any major imbalances (inclficiencics) which may be present in the existing design. For well-established
surveys, redesign may take the form ol [inc tuning of the existing design, which requires relatively precise information
on sampling and other errors (as well as on cost and operational aspects of the survey). For these purposes, it is
necessary to explore patterns of variation of sampling errors as related to important fcatures of sample structure such
as clustering, stratification, sample size and allocation, and cstimation procedures.

The identification of the relationships of sampling error (o the sample structure also helps in meeting the other
objecctives noted above, namely the objeclives of reducing the volume of computations necessary, of analysis and
summarisation, and of extrapolaling or imputing the information from one situation to another. For the sample dcsign
objective it is also important, as noted in Chapter 5, to be able 10 decompose the total sampling error in multistage
designs into components by sampling stages and other aspects of design and cstimation procedure; generally this
requirement is less important for other objcctives.

Rclationship Between the Objectives

Whilc there can be differences in emphasis, the various objectives noted above have many common featurcs and
requirements. All are helped by an improved understanding of the factors affecting the magnitude of the sampling
error, and identification of *portable’ mcasurcs which behave in a stable or regular way from onc situation to another.
For instance, dala reduction or summarisation cannot simply be a blind exercise in empirical curve [itting. Rather,
it is greatly helped by an understanding of the underlying patterns and relationships. Semi-empirical approaches are
usually the best for this purpose: choice of models guided by theory, but with flexibility in the choice of parameters
from empirical data, based on actual computations. The same patterns and relationships are also the basis of
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extrapolations from onc set of samples, variables and subclasses, etc, 1o another. Even more in-depth information on
the pattern of sampling errors and factors affecting their magnitude is required for sample design.

For various purposcs it is necessary to combine somehow the results from computations from different variables,
subclasses and samples on the basis of which patterns of variation can be established more clearly. However, it is
important to recognise that, while smoothing, pooling and extrapolation of computed sampling errors is necessary,
there are risks involved in doing that. Excessive or careless application of these procedures can hide real variations,
distort the results and mislead the user. The only guarantee against this is to base extrapolation and smoothing on
actual computations covering many variables and subclasses of different types, and always to check how well the
smoothed or modelled results fit the actual computations. In the following sections, sampling error models of
increasing sophistication will be discussed. We begin with the form which in appearance is the simplest: a direct
relationship between the magnitude of an estimalte and its standard error.

6.2 RELATIONSHIP BETWEEN THE MAGNITUDE OF AN ESTIMATE AND ITS
STANDARD ERROR

In many situations it is possiblc to find a simple (analytical or numerical) relationship betwecn the size of an estimate
and its standard error which predicts the actual standard error with acceptable accuracy. The establishment of such
a relationship greatly simplifics the task ol estimaling and presenting sampling errors.

From any estimate already availablc in the survey report, the reader can obtain an approximatc value [or its standard
crror from the relationship between the two expressed in a graphical, tabular or algebraic form. The existence of such
relationships is of course conditional on many assumptions about the sample design and nature of the variables
involved. But it is very convenient when such relationships do exist.

The possibilities and uses of establishing relationships between cstimates and their sampling errors arc best
demonstrated by considering some illustrations from actual surveys. Four examples are presented below in some
detail:

A. Stability of relative errors across siniilar surveys or survey rounds.

B. Sampling errors of proportions or counts perlaining 10 different subpopulations in large -scale censuses
and surveys.

C. Various approaches to summarising sampling crrors for estimated numbers of persons in different categories
in labour force and other surveys.

D. Semi-empirical or analytical relationship between the magnitude of an estimate and its sampling error.
It may be noted that, apart from Illustralion 6A, the other examples all relate to estimates of proportions or counts,
rather than of means or aggregated values of substantive variables. This is because the relationship between an

estimate and its standard error is usually more complicated for the latter lype ol statistics and not amenable 1o
modelling in a simple form.
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6.2 Relauonship Between the Magnitude of an Estimale and its Standard Error

ILLUSTRATION 6A STABILITY OF RELATIVE ERRORS

By relative error (relative standard error, coelficient of variation) is meant the standard error of an estimate divided
by the magnitude of the estimate, often expressed as a percentage. It is found empirically that in certain circumstances
relative error is rather stable over time. This applies especially across rounds of a survey with the same or similar
content, design, sample size and other aspects ol methodology. Stability of the relative error implies that factors other
than the size of the estimate itself which affect the standard error remain more or less constant, so that standard error
varies directly in proportion to the size of the estimate.

Table 6A.(1) provides an illustration from a series of livestock surveys in Yugoslavia, quoted from Zarchovich (1965).
While the estimated total may vary over the years, the relative error tends to be rather stable for a given region and
variable. To the extent that relative error can be cxpected to remain constant, the standard error of an estimate from
a new round can be approximated by multiplying the estimate with an averaged value of the relative error from
preceding years. Note that in the illustration this procedurce has becn applicd separately within each rcgion.

Table 6A.(2) shows an example [rom similar data, which in addition examines how stable rclative errors arc
(Zarchovich, 1979). It shows for cxample that in Quarter 1, averaged over scveral vears, around 45% of the values
of relative errors were within £ 5% of the overall average for the calcgory, and 75% werc within = 109% of the
average, and 95% within = 15%. A more comprchensive analysis of variation than that shown in these examples can
be carried out by decomposing the total variation into components between quarters, ycars, ilems, regions, etc. This
can help to identify the best procedures for averaging values for future use.

Stability of relative error is a very simple and convenicnt model. But at the same time, it involves a number of
assumptions which may or may not be valid in particular situations. Even in surveys with the same content and
procedures, changes in population characteristics, or in survey conditions, design and sample size, etc, may disturb
the stability of the relationship. In any casc, continued validity of the assumed relationships should be monitored on
the basis of comparisons between new computations and predictions from previous rounds.
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TABLE 6A.(1). Relative standard errors in different rounds of a live-stock survcy.
(Source: Zarchovich, 1965.)

FSTIMATED TOTAL NUMBER OF PIGS AND TIIL CORRESPONDING SAMPLING
ERRORS AS OBTAINED IN A GROUP OF SELECTED DISTRICTS IN THRFF SUCCESSIVE YEARS

Serial Fslimated total !arl::’r:ﬁf‘r"‘af:m
ngm- Dustrict

cr 1957 I 1958 I 1959 1957 I 1958 1959
Thousane . ...|.... Perceniage .. ..
1 Krulevac 49 67 81 75 6.7 5.4
2 | Zaylar | 41| a2 | 70| 11| 67
k! Kraljevo 24 30 40 8.2 8.7 8.6
4 Ni 54 66 16 74 1.5 7.8
S Svelozarevo 59 91 102 6.6 6.5 5.3
6 | Catak 38| 41 ] 59| 557 a4 ] 50
7 PirolL 8 21 22 84 1.6 7.9
8 Polarevac 1?7 159 | 187 6.7 6.7 7.2
9 | Prijepoljc f' 6 71130 1201 11.0
10 Prokupljc 26 32 4] 517 59 53
11 Smederevo 48 68 80 6.1 5.8 7.6
12 Titovo Ulice 28 32 45 6.8 6.8 49
13 Novi Pazar 3 | 4 5 26.5 | 256 | 259

ESTIMATED TOTAL NUMBER OT POULTRY AND TIE CORRESFONDING SAMPLING
ERRORS AS OBTAINED IN A GROUP OF SELECTED DISTRICTS IN THREE SUCCESSIVE YEARS

Serial Estimalted lotal sar?prﬁtr'\l;uel’reror
pum- Dastricl
ber 1957 | 1958 | 1959 | 1957 | 1958 | 1959
Thousand . ..|.... Percemtuge . ...
1 Krulevac 486 | 581 444 56 4.9 5.0
2 Zaje¥ar 358 | 367 | 272 | 5.0 | 4.8 | 44
3 Kraljevo |88 226 213 6.1 69 6.1
4 Ni§ 515 | 580 | 491 38 38 39
5 %veloz:ucvo ' 489 600 | 478 4.3 43 4.7
' 6 adak 352 | 411 | 356 | 48 | 5.0 4.8
7 Pirot 181 197 185 74 7.2 12
B PoXarcvac 691 705 973 5.4 52 7.1
9 Prijepolje 47 51 57 6.8 7.2 66
10 Prokuplje 254 258 |, 224 55 6.0 57
11 Smedercvo 45 | 401 | 7 4.6 4.6 4.6
12 Titovo Ulice 233 270 | 274 54 52 5.1
13 Novi Pazar - 49 , 49 ? 8.8 89 8.8
i
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TABLE 6A_(2). An example of stability of relative errors.
(Source: Zarchovich, 1979.)

Relative error in estimated aggregates of number of pigs in Yugoslavia.

Quar 1964 1965 1966 1967 1968 1969 average overall

ter by quarter average
Total

1 5.24 5.23 5.10 5.01 5.39 6.11 5.5

2 4.22 4.27 4.25 4.34 4.51 - 4.6

3 4.4 4,20 4.46 4.33 6.53 6.21 4.8

4 5.84 5.53 5.53 5.59 6.46 6.29 5.5 5.1
<2 months

1 - 7.14 7.57 7.68 8.21 9.16 8.2

2 5.73 6.09 7.18 6.20 7.09 - 6.6

3 7.10 6.90 7.06 7.25 9.02 9.18 7.7

4 8.76 8.26 B8.41 8.92 9.44 9.68 9.0 7.9
2-6 months

1 6.01 6.66 5.97 6.66 7.37 6.7

2 5.07 5.35 4.93 5.23 5.86 - 5.9

3 5.38 5.73 5.88 5.54 B8.48 7.54 6.5

4 6.21 6.07 6.11 5.65 8.48 7.75 6.7 6.5
6-12 months

1 - 6.10 5.65 6.25 5.95 6.65 6.0

2 5.52 6.34 5.30 5.95 5.34 - 5.5

3 5.35 4.95 4.83 4.92 6.57 6.06 5.0

4 6.82 6.82 7.11 7.03 7.7 7.5 7.2 5.9
12+ months

1 - 6.30 6.92 6.48 7.15 7.45 7.3

2 5.46 6.39 6.46 6.93 7.09 - 7.1

3 6.26 6.59 6.62 6.93 8.54 B8.16 7.4

4 6.37 7.15 6.83 7.18 7.75 8.40 7.2 7.3
Sows

1 - 6.25 6.68 6.32 6.91 7.37 7.1

2 5.48 6.09 6.08 6.36 6.80 - 6.6

3 5.88 6.48 6.39 6.53 B8.44 B8.04 6.9

4 6.48 6.90 6.44 6.446 7.66 8.31 6.8 6.9

Deviation of individual relative errors from the overall average.

--Quarter 1-- --Quarter 2--
Interval no. of cum.% no. of cum.%

errors errors
95-105 27 44.3 22 36.7
90-110 19 75.4 14 60.0
85-115 12 95.1 15 85.0
80-120 2 98.4 3 90.0
75-125 - - 3 95.0
70-130 - - 3 100.0
65-135 1 100.0

60- 140 - - - -
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ILLUSTRATION 6B SAMPLING ERRORS OF PROPORTIONS AND COUNTS

There are many censuses and surveys where the primary interest is in producing estimates of proportions or numbers
of individual units which possess cerlain specified characleristics. For example in a survey of housing, the interest may
be primarily in the proportion or numbers of households with access to ceriain amenities such as running water,
electricity, private toilets, etc. Labour force surveys are another good example dealt with in more detail in the next
illustration. In such surveys the main focus is usually on proportions and numbers of persons in various categories
of the labour force. Similarly in health surveys, the interest may be in estimating proportions or numbers of persons
in various categories such as those who experience illness or injury, or receive treatment during a specified period.
Such estimates are often required separately for numerous geographical subdivisions and groups in the population.
The task of compuling and presenting sampling errors is greatly reduced when standard errors can be expressed as
a simple function of the size of 1he estimales concerned. Such relationships can be established for estimates of
proportions and counts, but not so readily for means or aggregates of values of substantive variables.

Tables 6B.(1) and (2) present two parls of the rclationship between the sampling error and certain other parameters
for an cstimated proportion or count. The first parl, 6B.(1), gives the rclalionship on the assumption of simple
random sampling (SRS); the second part, 6B.(2), gives the design effects (defts) by which standard errors from the
first part may be multiplied 10 obtain the final value of the error for a specific characteristic. In this scnse, this
illustration represents a more sophisticated (hence more general and accurate) formulation of the relationship than
Illustration 6A where differcnces in deft arc not explicilly brought in.

To understand Lhe basis of Table 6B.(1). consider a simple random sample of size n drawn from a population of sizc
N to estimate the proportion p or count N’ = p.N of individuals with a certain characteristic. The well known
expression for their standard error with SRS is

[
se(p) = J(I-f)-p—(l-—m = Qﬂp(l-p) | YN (6.1)
. n f

se(N') = N.se(p) = \J%-p(l-p).x/ﬁ = Vl%f.(l-p) N (6.2)

—
rse(N') = se(N')N' = %Q /N (6.3)
P

where se stands for the standard error of an estimate; rse is its value rclative to the magnitude of the estimate; and
fis the sampling rate = n/N. These equations allows standard errors to be expressed in a very concise form covering
the full range of p values encountered.
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6.2 Relationship Between the Magnilude of an Estimate and its Standard Error

The data shown relate (0 a large sample attached to the census of population in the United States (Waksberg et al,
1973), the results for which were required for a number of characteristics (summarised in Table 6B(2)) for numerous
geographic subdivisions of the country. Because of the very large number of estimates involved, this form of concise
summarisation of the information on sampling errors provides an example of great practical relevance. (A more recent
example on the same lines will be given in [llustration 7E in the discussion of modes of presentation of sampling
€rrors in survey reports.)

In the present case, the sample was drawn from the census with a constant rate f = 0.2. With f constant, (6.1)
expresses se(p) as a function of p and N. (To remind, p is the proportion of the population with a certain specified
characteristic, and N is the total population count in a geographical subdivision of the country.) The magnitude of
se(p) s insensitive to the value of p, especially in the middle rahge on either side of p = 0.5. Hence in the lower
panel of Table 6B.(1) it has been considered sufficient to show only a few rows: reasonable values for other values
of p may be obtaincd by interpolation between the rows. Also se(p) is the same for p and its complement q = (1-p).
Columns show the error for different population bases N; it is inversely proportional to the square-root of N along
any row (fixed p). It is not necessary (o go to very large values of the base N, because with large N the corresponding
standard error becomes too small to be important.

The upper panel of the table shows se(N') as a function of N (columns) and N' (rows), where N’ is the number of
persons with a certain characteristic in the total population N. As shown by cquation (6.2), for small p = N'/N,
standard error se(N’) depends only on N’, varying approximately proportional to its square-root and remaining
practically constant across columns (different population bases, N). The effect of N appears only when p is large, and
generally remains small. The important thing is that for an SRS, the same relationships (6.1) and (6.2) are valid
independently of the particular characieristic defining p, or the particular base population (such as a geographic arca)
being considered. The main assumption of the model comes in moving from SRS to actual standard errors through
the introduction of defts in Table 6B(2). The value of deft depends on various factors but, on the basis of empirical
information in the present case, it depends predominantly on the particular group of characteristics being considered.
This assumption is the basis for constructing Table 6B(2). The values shown are actually averaged over a large number
of computations for different characteristics in each group and over different geographical domains. (The last column
in the table shows the range of values averaged.) Different such tables were in fact constructed for different major
regions of the country.
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TABLE 6B.(1). Standard errors of estimated counts and proportions assuming simple random sampling
(Source: Waksberg et al, 1973.)

Approximate Standard Error of Estimated Number Based on 20-Per cent Sampie

Number of persons in areal)

Estunated number?)

1,000 *10,000 25,000 100,000 250,000 1,000,000 3,000,000 5,000,000 20,000,000
50 ..., o o 15 15 15 15 15 15 15 15 15
100 ... ... ... . 20 20 20 20 20 20 20 20 20
2%0 . . . . 30 30 30 10 30 30 0 30 30
SO0 ... e eeiaan. 3 a8 a5 45 - 4S8 a5 45 a5 s
100D .. vt v e e . 60 60 65 65 63 65 63 65
2800 .. e el 50 95 100 100 100 100 100 100
X 100 130 110 140 140 140 130 140
10,000 . ) 150 190 200 200 200 200 200
15000 ... ... ... . . 150 230 240 210 240 240 240
385000 .. aeei el e . .. .. 270 300 310 310 320 320
SO.000 ... v e e o . 120 400 440 450 440 250
© 75,000 . e e . .. 210 450 520 540 540 540
100,000 ....  ..eoo. ... L . . 4%0 600 620 610 630

11 For estimated numbers larger than 100,000, the relative errors are somew hat smaller than for 100,000,

) An area is the smallest complete geographic area 10 whuch the estimaie under considerarion penains Thus, the area may be the state, ciry, county,
standard melropohitan statistical area, urbanized area, or the urban or rarzi porucn of the siaie or county. The rural fann or rural nonfarm
persnns 1n the state or county, the Negro persons cte, do not represert coripleie areas.

Approximate Standard Error of Estimated Percentage Based on 20-Per cent Sa:nple

Base of Perecntage

Estimaied  _
percentage 500 1,000 2,500 10,000 25000 100,000 250,000
20r98 . . ... 11 09 0.6 03 02 0.1 a1
SorYs .. 20 14 09 04 03 0.1 0.1
[0 orge . 27 1.9 12 06 04 0.2 [\ A}
250r 7S . 19 2.7 1.7 0.9 0.5 0.1 0.2
50 .. ... .. 45 3.2 20 1.0 06 0.3 0.2
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TABLE 6B.(2). Defts to be applied to Table 6B.(1) to obtain standard errors for different types of characteristics.

Factor to be Applied to Standard Error
Sample Avcrage Range of
Subject rate faclo% l‘ucfor?
(per cent) s
Race
South ..... .................... 20 0.9 09-1.0
Otherregions ................... 20 1.6 1.0-1.7
Age .. 20 03 08-09
Household relationship ............. 20 0.5 —
Families and subfamilies!) .......... 20 0.6 —
Unrelated individuals. ......... ..., 20 1.3 1.2-14
Type of group quarters ............. 20 0.6 0.5-0.6
Marital status ..................... 20 0.6 0.6--0.7
Marital history ................... 5 2.0 1.9-2.1
State of birth ..................... 20 1.3 1.2—1.5
Countryoforigin .................. 15 1.6 1.5—-1.8
Spanish origin or descent ........... 5 29 2.7-33
Nativity and parenlage ............. 15 1.7 14—19
Mother tongue .................... 15 1.8 1.6-2.0
Ycar moved into present house . . ..., 15 1.9 1.7-2.0
Residence in 1965 ... ....... ...... 15 20 1.8-22
Rural farm-nonfarm residence
United States, total ....... ...... 20 1.7 1.5-2.0
Inside SMSA . ............ ... . 20 [ -
Outside SMSA .................. 20 1Y -
School enrollment .......... ...... 15 1.0 09-1.0
Years of school completed ........ . 20 1.0 1.0-1.1
Vocational training .. .............. 5 1.7 1.6-1.8
Veteranstatus .................... 15 0.9 0.9—1.0
Disability .. .................... .. 5 24 2.2-26
Labor force status. ................. 20 0.8 0,7—-0.%
Unemployed ...................... 20 1.1 1.0-1.2
Weeks worked in 1969 .. ........... 20 08 0.7--0.38
Activity Syearsago ............... 20 0.8 0.7-08
Placeofwork ..................... 15 1.3 i.2—-13
Means of transportation to work . ... 15 1.3 1.2—-1.3
Occupation. ................... ... 20 1.1 1.0-1.1
Tndustry ........ ... .. .......... 20 1.1 1.0—1.1
Class of worker ................... 20 [.1] 1.0—1.1
Income
Persons ......................., 20 1.0 0.9-1
Families ....................... 20 1.0 1.0-1.1
Poverty status
Persons ........................ 20 1.8 1.7-2.1
Families ....................... 20 1.1 10-12
All other
20percent ..., 20 1.0 -
ISpercent ... ... ... ..ol 15 1.2 -
Spercenl ............ ..., 5 22 -
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6 Data Reduction and Modelling

ILLUSTRATION 6C ESTIMATES OF COUNTS IN DIFFERENT LABOUR FORCE CATEGORIES.

Many surveys have the objective Lo cstimate the number of households or persons in various categories of the
population. This is the case for example with labour force surveys, where most of the statistics of interest take the
form of estimates of the number of persons in various economic categories by employment, occupation and industry,
etc. Separate estimates are usually rcquired for different geographical areas and diverse demographic and
socioeconomic subclasses in the population. This makes it highly desirable to be able to relate standard errors to the
size of the estimated counts. The rclationship may have to be specified separately for different geographical arcas,
different classes of the population, diffcrent labour force categories, or different periods of the survey. Al the same
time, it is highly desirable to model the information so as to minimise the number of separate presentations needed.
Because of the greal practical importance of the issues involved, several examples are presented and discussed below
(International Labour Office, [986). These involve the presentation of sampling errors in concise and abbreviated
form to various degrces. This is done on the basis of some underlying model which has not always becn made explicit
in the examples given. Some insight can be gained by comparing the various forms in Table 6C with the simple model
of [llustration 6B. '

As a point of reference, Table 6C.(1) shows the crude approach of presenting actual values of standard error for a
selection of specific cstimates, such as for the number of employed or unemployed persons in a particular age or sex
group. While such information may be uscful in interpretation of the specific results, its limitation is that it provides
no direct information on the pattern of variation of sampling errors, nor on many other subgroups of interest not
explicitly included.

TABLE 6C. Standard errors in labour force surveys:
{1] Venezuela.

Estimated Standard

figure error

Population aged 15+ 8399945 66607
In the Llabour force 4494689 38732
males 3423711 30369
females 1260973 15491

Total employed 4351373 35904
males 3155559 28011
females 1195814 14853

Total unemployed 333316 7956
males 268152 6957
females 65164 3079

Table 6C.(2) goes a little further. By introducing an age and sex classification, the volume of information displayed
is considerably increased. In accordance with equation (6.2), the main factor determining se(N’), apart from deft, is
the population base N; the dependence on p = N'/N is much less marked. This cxplains the difference between the
‘total’ column versus the ‘male’ or *female’ columns. (The sample base in the latter is roughly half the former, hence
their absolute error se(N"), is smaller by a factor of around 0.7.). By contrasl, relative error shown in the last three
columns is determined by (6.3), apart from deft. It is dctermined again primarily by N, but this time inversely to its
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6.2 Relationship Between the Magnitude of an Estimale and its Standard Error

square-root. However dependence on p is more marked than before (because of the different functional relationship;
compare the factors under the square-root sign in (6.2) and (6.3)). This explains the big differences in relative errors
at the extreme age groups for which p (proportion in the labour force) tends to be much smaller. By showing different
population bases, Table 6C.(2) already brings out some regularities in the pattern of sampling errors. However, it
sulfers from the same basic limitation as Table 6C.(1) in that it provides no information directly on categories not
shown. Note also that the table applies only to a particular variable, in this case the population in the labour force;
separate such tables would be required for other variables such as the numbers employed or unemployed.

TABLE 6C. Standard errors in labour force surveys:
[2) Finland. Labour force by age and sex. First quarter, 1983.

Standard error Relative standard error

(1000 persons) (per cent)
Age group total male female total male female
15-74. ..., 12 8 8 - 0.5 0.6 0.7
1519 cueenn.. 302 2 B8 4.0 4.0
20-24.......... 4 2 3 1.4 1.9 2.2
25-29. ... ... 4 3 3 1.3 1.8 2.0
30-34.......... 4 3 3 1 1.6 1.7
35-39. il 4 3 3 1.1 . 1.4 1.6
40-44, ... .. ..., 3 2 2 1 1.7 1.7
45-49. .. ..., 3 2 2 1.3 1.8 2.0
50-54.......... 4 2 3 1.5 2.0 2.3
55-59. ... 3 2 2 1.9 2.6 2.8
60-64.......... 3 2 2 3.2 4.2 4.6
65-69.......... 2 2 1 10.0 13.0 16.0
70-7h.vona... 2 2 1 18.0 21.0 30.0

Tables 6C.(3) onwards follow a different approach. The slandard error of an estimate se(N’) is shown simply as a
function of the size (N") of the estimate. It is assumed that the same relationship (o size applies to diverse geographic
and other subgroups in the population, independent of the substantive characleristic defining the subgroup. The
underlying assumptions become clear by comparing this with the model in Illustration 6B. It is seen from Table 6B.(1)
presented earlier that se(N') is practically constant for different population bases (N), except for very large N'/N
(generally the first one or two entries in any row). In Table 6C.(3), this variation with N is ignored or averaged away.
Furthermore, this table applies 10 a particular variable (such as size of the labour force) or to a group of similar
variables, for which deft may be assumed uniform over different domains or subclasses and incorporated directly into
the table. This is the same assumption as in lllustration 6B, except that a separate table of defts is not needed for
the reason noted above.
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6 Data Reduction and Modelling

TABLE 6C. Standard errors in labour force surveys:
[31 Singapore. (Based on the 1983 survey results)

Size of
Estimate

2 000
1 000
500
200
100
50
20

000
000
000
000
000
000
000

Standard
Error

2 758
3373
2 754
1 867
1 349

964

Size o
Estima

5 000
2 000
1 000
700
500
200
100

f Standard

te Error

308
195
138
115
97
62
44

Table 6C.(4) follows the same approach, but shows the rclative errors as well. Though relalive errors can be useful
in the interpretation of specific results, in terms of ‘modelling’ the patterns of variation, they are in fact less useful
than absolule values when estimating proportions or counts (Section 6.4). This is because the relative measure is more
sensitive to variations in p among subclasses, variations which have nol been properly taken into account in the
simplified model on which Table 6C.(4) is bascd. The table also shows the effect of sample size by comparing
quarterly and annual figures, the lalter being averaged over four quarterly rounds. The reduction from quarterly to
annual averages is by a factor much less than 2 (1he square-root of the ratio of sample sizes); this is because of the

positive correlalion between overlapping quarterly samples.

TABLE 6C. Standard errors in labour force surveys:

[4] Norway.

S1ZE OF
ESTIMATE

5 000
7 000

10 000
20 000
30 000
40 000
50 000
60 000
70 000

100 000
200 000
300 000
400 000
500 000

Quarterly figures

STANDARD ERROR

Absolute relative
figure value %
1 400 28.0
1 700 24.3
2 000 20.0
2 800 14.0
3 400 11.3
4 000 10.0
4 000 8.8
4 800 8.0
5 200 7.4
6 200 6.2
8 600 4.3
10 300 3.4
11 700 2.9
12 800 2.6
15 900 1.6
16 000 0.9

Yearly averages

STANDARD ERROR

Absolute
figure
900
1 100

300
800
200
500
800
100
300

4 000
5 500
6 600
7 400
8 100

10 100
10 200

relative
value %
18.0
15.7

13.

SN0 0 W
~NNOCWWOoO o

—_ - NN
o0 N O
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6.2 Relattonship Beiween the Magmitude of an Esumalte and 1ts Standard Error

An important consideration is to improve the accuracy of the model by developing separate versions of the
relationship for different types of population subgroups. However, increasing the number of separate versions also
has practical disadvanlages. Therefore a compromise is required between the (wo objectives of accuracy and
conciseness. In Table 6C.(5), accuracy of the model is improved somewhat by introducing separate versions for males
and females. Table 6C.(6) goes much further, by showing the relationship separately for a large number of ethnic,
demographic and socioeconomic calegories. Presumably, it incorporates differences both in p and deft among the
categories. | )

TABLE 6C. Standard errors in labour force surveys:
[5] Italy. National estimates by sex.

Estimate Men Women Estimate Men Women
Y S S Y S S
10 000 750 000 12250 12050
20 000 2350 1950 1 000 000 13950 13900
30 000 2850 2400 1 250 000 15450 15500
40 000 3250 2800 1 500 000 16800 17000
50 000 3600 3100 1 750 000 18000 18350
75 000 4300 3800 2 000 000 19150 19600
100 000 4900 4400 3 000 QOO0 23050 24000
150 000 5900 5400 5 000 000 29050 31000
200 000 6700 6200 7 500 000 34950 37950
250 000 7450 6950 10 000 000 39850 43800
300 000 8100 7600 15 000 000 47900 -
400 000 9200 8800 20 000 000 55950 -

500 000 10200 %800 - - -

Y: National estimation in absolute figures, from survey results of a specific variable
(employment, unemployment, apprentices, students, housewives, etc).

S: Corresponding standard error in absolute figures.

A major issue in the modelling of proportions or counts concerns the identification of groups of the population [or
which a common form of the relationship between an estimate and its standard error can be uscd to give resulls with
acceptable accuracy. The basic assumption is that the effects of p and deft are uniform within each group. Here the
distinction bewween cross-classes (defined in terms of characteristics of individuals) and geographical domains is useful
(Section 4.2.3). Usually, different domains tend to be similar in the overall p, as each includes a cross-section of
individuals with different characteristics. In so far as they form separale design domains, they may differ in the designs
used and hence in deft for a given variable. However, it is not uncommon to have similar designs in different
geographical domains. Consequently it is often reasonable to use a common form of relationship for diverse
geographical domains, as is done in both Illustration 6A and Illustration 6B. By contrast, cross-classes often differ
in p, and also in deft which depends on the subclass size (as explained more fully in the next section). This may
necessitate the use of different forms of the relationship for different types of subclasses, as done in Table 6C.(7).
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6.2 Relationship Between the Magnitude of an Estimate and its Standard Error

The above examplcs are confined to cstimates of proportions or counts. In Table 6C.(7) an attempt has becen made
1o extend this in a very approximale manner to cstimates of values, such as aggregated or average hours worked, or
average or median duration of employment. The underlying model in this extension is to correct for differences in
coefficients of variation (and if nccessary defis) between different substantive variables. This extension is not always
straightforward and involves additional assumplions and approximations.

TABLE 6C. Standard errors in labour force surveys:
[7] Australia.

Size of standard % of

estimate error estimate
4 500 970 21.6
5 000 1000 20.0
6 000 1100 18.0
10 000 1400 14.0
20 000 2000 10.0
50 000 2900 5.8
100 000 3900 3.9
200 000 5100 2.6
300 000 6000 2.0
500 000 7200 1.4
1000 000 9100 0.9
2000 000 11000 0.6
5000 000 15000 0.3

Note. The relative standard error of estimates of aggregate hours worked,
average hours worked, average duration of unemployment, and
medium duration of unemployment are obtained by first finding the relative standard error
of the estimate of the total number of persons contributing to that estimate, and then
multiplying the figure so obtained by the following factors:

aggregate hours worked = 1.2;
average hours worked 0.5;
average duration of unemployment
median duration of unemployment
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6 Data Reduction and Modelling

ILLUSTRATION 6D RELATIONSHIP BETWEEN AN ESTIMATE AND ITS ERROR IN
A FUNCTIONAL FORM

The empirical task of determining the relationship between the magnitude of an estimate and its sampling error is
greatly facilitated if some analytical form of general applicability can be established for this relationship. An example
is provided by the following expression uscd extensively in modelling of sampling errors [or estimates of counts (and
ol proportions using a similar proccdure) in the US Current Population Survey:

o vargx) =a+ bx

x
X

where X is the total number of individuals in a subclass possessing a certain specified characteristic; Vy’ is its
relvariance, ie the square of the relative standard error; and a and b arc paramcters estimated from actual
computations by an iterativc least squares procedure. In principle the procedure is applicd separately to appropriate
groupings of subclasses and items. Once cstablished, it can he used to estimate the variance of other items and
subclasses in the group. Basically, the method is applicable to estimates of proportions and counts of the population
having a specified characicristic; variance of estimates based on values reported for sample units do not lend
themselves to modelling in this way (United Statcs 1978, Chapter VIII). It may be pointed out that the above model
for relvariance implicitly assumes that deft is constant for slatistics in any set to which the same model is applied.
This follows from the obscrvation that for a proportion p = X/N, using

) - an[pLD]"
n

the relvariance may be rewritlen as

2 2
V2 = [se(o)ipl? = —["%} + NPy,

n

which with deft constant lakes the form (6.4).

The determination of the appropriate grouping prior (o estimating paramelers a and b is important. It is desirable
that the items included in a group have similar design cffects. It may be usclul to begin with provisional grouping
bascd on judgcment and past cxpericnce. Scalter plots of V,* versus 1/X could then be examined to identify
homogeneous groups. Table 6D.(1) provides an illustration of an application of the model.

The same model is applied to smooth and extrapolate sampling error results in the US Health Interview Survey
(Bean, 1970). Table 6D.(2) shows an cxample of fitted resulls using the model. “Type A’ data in the graphs reler to
prevalence and incidence data collecied with a recall period of 12 months, and “Type B’ to certain incidence data
collected with a recall period of 2 weeks. ‘Medium range’ means that values (of incidence erc) for an individual are
in the range 0-5 (in contrast to other ranges not shown: narrow range with valucs 0 or 1, occasionally 2; and wide
range with values above 5). This provides a concrele illustration of how the estimates may be divided into groups for
fitting the modecl.

Table 6D.(3) provides an indication of the goodncess of (it: it compares the actually compuled and modelled valuc of
relvariance of estimaled incidence of acute conditions for a large number of subclasses.
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6.2 Relationship Between the Magnitude of an Estimate and its Standard Error

TABLE 6D.(1). An example of functional relationship between an estimate and its rel variance.

- - 