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PREFACE

This is one of a series of technical studies produced under the auspices of the National
Household Survey Capability Programme of the United Nations Statistical Division
(UNSTAT) of the Department for Economic and Social Information and Policy
Analysis. The series is designed to assist countries, particularly developing countries,
in planning and implementing household surveys. A number of studies have been
published to provide reviews of issues and procedures in specific areas of household
survey methodology and in selected subject areas.

Irrespective of their particular source, all statistical data are subject to errors of
various types. As a component of the total error, sampling error is a measure of the
uncertainty in the results arising from the fact that inferences about the whole
population are drawn from observations confined to a sample. Information on
sampling errors is needed for the correct interpretation of sample survey results and
for improving survey design.

This study aims to provide a basic understanding of the practical procedures for
computing sampling errors and guidelines on how to analyse and utilise this
information. Topics are discussed with numerous illustrations to ensure that the study
is of maximum benefit to sampling practitioners.

The study was prepared by Mr. Vijay Vcrma who assisted the United Nations as a
consultant. It was edited by Mr. Edmundo Berumen-Torres. Among the reviewers,
special appreciation is extended to Professor Leslie Kish and Mr. Christopher Scott
for valuable suggestions leading to improvement of this work. The study was prepared
with financial support from the United Nations Population Fund.
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INTRODUCTION

1.1 THE CONTEXT

It is widely recognised as good practice for survey reports to include detailed information on the sampling variability
of survey estimates. Information on sampling errors is needed both for the correct interpretation of survey results
and for evaluating and improving survey design. Yet no such information is included in many reports based on
sample surveys. The primary reason for this state of affairs is a lack of appreciation among many producers as well
as users of statistics of the significance of information on sampling errors.

The present study is one of a series of Technical Studies produced under the auspices of the National Household
Survey Capability Programme with the objective of improving the quality of household survey work. It aims to provide
a basic understanding of the practical procedures of computing sampling errors, and guidelines on how to analyse and
utilise this information in the context of large-scale household surveys. Various topics are discussed in sufficient
technical detail with numerous illustrations, and in a reasonably self-contained manner, to ensure that the study is
of maximum benefit to sampling practitioners in developing countries.

While we have tried to make this study as self-contained and technically comprehensive as possible, it has been
assumed that the reader is familiar with the basic concepts of sampling theory and survey practice. Of course, concepts
and procedures which directly pertain to the discussion at hand are clearly defined and explained to the extent
possible, and a brief introduction to some basic ideas is given in this chapter. In the main, however, reference must
be made to the much more comprehensive explanations available in many standard texts on sampling methods and
in the literature generally.

To compute sampling errors for diverse survey estimates, it is necessary to have computer software specifically
designed for the purpose. In Chapter 5 a brief review is given of some of the programs available at the time the
present report was prepared.
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1.2 OUTLINE OF THE CONTENT

Part I of this study provides a technical description of the various practical procedures for computing sampling errors
in large-scale surveys with complex designs. Chapter 2 describes, with numerical examples, the most commonly used
method which is based on comparisons between primary selections within each stratum of a multi-stage stratified
design. Chapter 3 describes various methods based on the idea of sample replications, which are more readily
extended to complex statistics. Diverse practical issues in the implementation of these variance estimation procedures
arc addressed in Chapter 4, including a brief review of the available software for the purpose.

Part II considers the analysis and use of the information on sampling errors. Chapter 5 is concerned with
decomposition of the overall sampling error into components which are valuable in analysis and better utilization of
the information. This includes as its basis the decomposition into (i) the part of the overall sampling error which
would be obtained in a SRS, and (ii) the design effect which measures the effect on sampling error of various
complexities of the sample design. Each part can be further decomposed, for instance to isolate the effect of sample
size and weighting. Chapter 6 considers, more comprehensively and with many illustrations, the 'modelling' of
sampling errors to develop measures which are 'portable' for use from one statistic and situation to another. On this
basis, sampling errors for diverse subclasses and differences between classes can be related to those for the total
sample. Chapter 7 provides, again with many illustrations, issues relating to the presentation of sampling errors to
suit the requirements of different categories of users.

1.3 SOME BASIC CONCEPTS AND PROCEDURES

This section briefly reviews some basic aspects of survey structure and design to which repeated reference will be made
in the course of discussion on sampling errors in the following chapters.

Multi-purpose Surveys: Complex Design and Estimation

The requirements and procedures for computing sampling errors have to be determined on the basis of the type of
application required.

A common feature of national household surveys is their multipurpose nature. A typical survey is multipurpose in
several respects. It may involve many types of substantive variables; for any variable, different types of statistics such
as estimates of aggregates or totals, proportions or percentages, means, rates and ratios, differences and other
functions of ratios may be involved. Statistics may be required not only at the national level, but also separately for
various geographical domains such as urban and rural areas and regions, and for numerous olher subclasses or groups
in the population. The need for comparisons among groups in the population can vastly increase the number of
separate statistics involved; in analytical surveys olher, more complex measures of relationship such as regression and
correlation coefficients may also be encountered. Another dimension of variation is the different types of units of
analysis in the survey, such as individual persons, households, or communities. Some household surveys also involve
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analysis in terms of non-household units such as agricultural holdings and household enterprises, or various subunits
within households such as earning, spending and family units.

A typical national household survey may involve a sample of several thousand households selected from area units
in a number of stages with stratification at each stage. Special selection procedures such as systematic sampling and
selection with probability proportional to si/e (PPS) may be involved. The sampling rates may differ between different
domains such as urban and rural areas or regions of the country. Multi-phase sampling and overlaps or rotation
between samples are other examples of complexity. The sample data may be weighted. More complex composite,
synthetic, seasonally adjusted estimates, etc, may also be involved, though the use of complex estimation procedures
tends to be less common in developing countries, at least in part due to the lack of auxiliary information required
for their application.

All these aspects of complexity and diversity lend to be even more pronounced in the case of programmes of
household surveys, where individual surveys may have different objectives and content, different designs and structures,
and diverse operational and substantive linkages.

Multi-stage Sampling

In household surveys in developing countries (and in many developed countries as well), samples of households and
persons are usually selected in a number of sampling stages. For instance, the whole country may be divided inio area
units such as localities or census enumeration areas (EAs), and a sample of these areas selected at the first stage. The
type of units selected at the first stage are called primary sampling units (PSUs). For the first stage of selection, a
frame of PSUs is needed which lists the units covering the entire country exhaustively and without overlaps, and which
also provides information for the selection of units efficiently. Such a frame is called the primary sampling frame
(PSF). The next (second) stage may consist of dividing each of the PSUs selected at the first stage into smaller areas
such as blocks, and selecting one or more of these second stage units (SSUs) from each selected PSU. This process
may continue till a sample of sufficiently small ul t imate area units (UAUs) is obtained. Finally, in each selected UAU,
individual households may be listed and a sample selected with households as the ult imate sampling units (USUs).
In the survey, information may be collected and analyzed for the USUs themselves; or for other types of units
('elements') associated with the selected USUs, such as individual persons within sample households.

In a multi-stage sample, the probability of selection of an ultimate unit is the product of probabilities at the various
stages of selection. It is possible (and common) to have varying probabilities at different stages, but balanced such
that the overall probability of all ultimate units is uniform. A common procedure is to select the PSUs (and other
higher stage units) with probabilities proportional to some measure of their size (PPS), and to obtain an equal
probability sample of elements ('epsem') by selecting the USUs with probabilities which compensate for differences
at the preceding stages.

Stratification

Stratification means dividing the units in the population into groups and then selecting a sample independently within
each group. This permits separate control over the design and selection of the sample within each stratum, such as
urban-rural areas or regions of a country. This means that different parts of the population can be sampled differently,
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using different sampling rates and designs as necessary. The separation may also be retained at the stage of sample
implementation and estimation and analysis, but this is not essential to the idea of stratification. It is common for
instance to pool the results from different strata to produce estimates for the whole population, or for major parts
or 'domains' of the population each of which is composed of a number of strata. However, it is important to note
in the present context that in estimating variances, it is necessary to take fully into account the stratification as it
affects the magnitude of the sampling error.

Probability Sampling; Measurable Samples

It is necessary, at least in the context of 'official' statistics, that surveys are based on probability and measurable
samples. A probability sample means that every element in ihc population is given a known and non-zero chance of
being selected into the sample. To obtain a probability sample, certain proper procedures must be followed at the
selection and implementation stages. The sample has to be selected from a frame, representing all elements in the
population, by a suitable randomisaiion process which gives each unii the specified probability of selection; in
addition, in estimating population values from the sample, the data from each unit in the sample should be weighted
in accordance with the unit's chance of selection. The major strength of probability sampling is that the probability
selection mechanism permits the application of statistical theory to produce valid estimates of the population values
of ¡merest, and furthermore, to examine ihe properties such as variance of these estimates.

A related but more demanding concept is that of mcasurability. A sample is called measurable if from the variability
observed between units wilhin the sample, usable estímales of the sampling variance (ic. of ihe variability between
different possible samples) can be obtained. To be measurable, it is highly desirable that the sample be a probability
sample; it should also meet certain other requirements to ensure that the sampling variability can be estimated from
ihe observed variability between unils in the one sample that is available.

Simple Random Sampling

Though usually of limited relevance in the context of household surveys in developing countries, a simple random
sample (SRS) provides the point of reference against which the statistical efficiency, as well as more generally the
cost and other aspects of the quality of the actual complex designs used can be evaluated. We will make constant
reference to such comparison in the form of the 'design effect'. A SRS is obtained by a series of random selections
applied directly to the population elements, which ensures that the chance of selection is the same not only for the
elements individually, but also in all combinations of any given size.

Systematic Sampling

A common method of sample selection is to select ihe units systematically from a list ordered in some way. The basic
idea is as follows. Suppose that an equal probability sample of n units (listings) is required from a population of N.
From the list of units, preferably arranged in some useful way, one unit is selected from every I=N/n units in the list.
A random number r between 1 and I identifies a sequence number of the first un i t selected. Then starting with r,
every 1th unit may be selected, ie the sequence numbers selected being r, r+I, r+2I,....., r+(n-])I. To the extent that
the units in the original list appear in a random order, the resulting sample is equivalent to a random sample of the
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units concerned. However, existing lists are practically never randomly ordered; in any case the objective of systematic
sampling is to make use of the order available to achieve a better spread of the sample according to some meaningful
criterion, such as geographical location of the units. In this manner, systematic sampling provides implicit
stratification; it can be regarded as stratification of the population into zones of size I, and the selection of one unit
per zone or 'implicit stratum'. The widespread use of systematic sampling is also due to the great convenience of the
method in many situations.

1.4 ESTIMATION

Some remarks on the basic estimation procedures used in sun'eys will be useful as a background to the discussion
on variance estimation.

Estimating Proportions. Means or Other Ratios from a Multi-stage Sample

The most common type of estimator encountered in surveys takes the form of a ratio of two sample aggregates, say
y and x:

E r^ v^
V = > > W , V ,f ' ' ' Jl ' Jj u *J

i = V ï = V V u > * O-1)Z^, i 2^,l2^jwijJ-ii

r = y/x

Both the numerator (y) and denominator (x) may be substantive variables - as for example in the estimation of
income per capita from a household survey, where y is the total income and x the total number of persons estimated
from the survey. For ultimate unit j (a household) in PSU i, y§J refers to its income and x,j to its size (=numbcr of
persons, in this example). Quantity wg is the weight associated with the unit. Sophisticated methods may be used to
compute the weights to be applied, but at the most basic and important level, the weights - called the desicn weichts -
are inversely proportional to the units' probabilities of selection into the sample. With the same probability given

to all units, the design weights are also uniform and the sample is termed self-weighting.

Ordinary means, percentages and proportions are just special cases of the ratio estimator. In a mean, the denominator
is a count variable, that is, x^ is identically equal to 1 for all elements in the sample. This gives

=
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For a proportion (or percentage) the additional condition is that y;j is a dichotomy equal to 1 or 0 depending on
whether or not unit j possesses the characteristic whose proportion is being estimated.

The survey may also involve more complex statistics such as differences, weighted sums, ratios or other functions of
ratios. These can be estimated in an analogous way.

Estimating Totals

The simple unbiased estimator (equation 1.3 below) is usually not satisfactory in practice for estimating population
aggregates. This is especially the case for surveys with a multi-stage design and small sample size. This is because with
multi-stage sampling, the resulting sample size varies at random, and therefore aggregates directly estimated from the
survey can have a large sampling error. The problem is even more serious when estimates are required for population
subclasses the selection of which is not explicitly controlled in the multi-stage design.

An equally important problem arises from the fact that estimates of aggregates are directly biased in proportion to
the magnitude of the coverage and related errors. By contrast, this effect on estimates of ratios can be much less
marked.

The appropriate procedure for estimating population aggregates is generally as follows. In place of a simple inflation
of the form

(1.3)Y= F.y

the required aggregate may be expressed in the form of a ratio-type estimator

Yr = .

where y and x are estimated totals from the sample; y being the variable of interest, and x an auxiliary variable for
which a more reliable population aggregate value X is available from some external source. The value and
applicability of this procedure depends on several factors. Firstly, the correlation coefficient between y and x must
be positive and preferably large, say greater than 0.6 or 0.7 at least. Secondly, X should be available with higher
precision than the simple estimate x of the population aggregate which can be directly produced from the sample
itself. Thirdly, X in the population and x in the sample should be based on essentially similar coverage and
measurement; a difference between the two would introduce a bias into the estimate. This often requires that values
of the variable x for individual units - unless they are simply a count of the cases, as in the case of an ordinary mean -
are taken from the external source rather than directly from the measurements in the survey, though of course that
must be for the actual units included in the sample.
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The precondition for the use of this procedure of course is the availability of an appropriate external total X. In many
situations, such a total is obtained from sources such as censuses, administrative records or very large samples, which
may be considered practically free of sampling error. In such cases, the variance of (1.4) can be obtained from thai
of the ratio y/x (multiplied by X2).

For this reason, and the fact that means and proportions are merely special cases, the focus in the discussion to follow
is primarily on the estimation of variances of ratios (and related statistics such as differences of ratios).

Weighting of the sample data

In producing survey estimates, weighting of the sample data may be introduced for several reasons. The primary factor
is the weighting of sample elements in inverse proportion to their selection probabilities. Additional weights arc often
also introduced for other reasons, such as to take into account undcr-covcrage, non-response, and other factors
resulting in departures between the sample results and the corresponding information about the population available
more reliably from other sources. The issues involved in the weighting of complex surveys arc themselves complex,
and need not concern us here. The important point is that, however determined, the weights used in producing
estimates from the survey are also relevant in estimating their variances. For this, it is essential that all information
on weights be documented and preserved, preferably as an integral part of the survey data files.

First and second order statistics

As noted above, in a multi-stage sample the probability of selection of an ultimate uni t is the product of probabililics
at the various stages of selection. In estimating proportions, means and other types of ratios, it is only the ultimate
sampling probabilities and nol the details at various stages which malter. In fact, apart from the weights, no other
complexities of the sample selection appear in this estimation. For this reason, statistics such as proportions, means
and ratios are called first order statistics. These are distinguished from second order statistics, the estimation
procedures for which must lake into account the complexity of the sample design. Sampling variance is the prime
example of the latter type of s ta lis tics. The practical implication here is that to estimate sampling errors, it is essential
to have information on the structure of the sample - both on the procedures of selection and of estimation.

1.5 SAMPLING VARIANCE

The particular units which happen lo be selecied into a particular sample depends on chance, the possible outcomes
being determined by the procedures specified in the sampling design. This means that, even if the required
information on every selected unit is obiained entirely without error, the results from the sample are subject to a
degree of uncertainly due to these chance factors affecting the selection of units. Sampling variance is a measure of
this uncertainty.

The distribution of estimates from all possible samples with a given design (ie selection and estimation procedure)
is called the sampling distribution of the estimator. The average of the sampling distribution, ie of all possible sample
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estimates weighted according to their probabilities, is called the expected value. Symbolically we may express this as
follows. If p, is the probability and ys the estimate from a given sample s, the expected value of the estimator y is:

: z.pfy. (L5)

where the sum is taken over all possible samples. In many designs, p, is a constant; for example in a simple random
sample (without replacement):

_ (N-n)\.n\ (16)
JV!

since the inverse of this is the total number of possible samples, each equally likely.

The variance of y is defined as:

(L7)

For various reasons, the expected or average value from all possible samples may not equal the actual population
value (Y). In the absence of measurement errors, this may arise from the particular estimation procedure, in which
case il is called the technical or estimation bias:

Bias = E(y) - Y (L8)

The combined effect of variance and bias is the mean square error, which is defined in terms of the squared
differences of sample estimates y, from the actual population value Y:

MSE(y) = î /Vlvtf = Var(y) + (Bias? (L9)

In most well designed and implemented samples, with appropriate estimation procedures, the estimation bias is trivial.

An important result of sampling theory is that, under certain conditions, the sampling error (variability between
different samples) can be estimated from the observed variability between units in the one sample that is available.

Inference from sample surveys are made in terms of probability intervals, usually confidence intervals. These intervals
are defined on the basis of an assumed form of the sampling distribution, usually taken as a normal distribution. An
estimated confidence interval is a range of values which contains the population value of interest with a given level
of confidence (such as 68%, 95% or 99%). (Illustration 7A.(1) provides some further remarks on this important
concept.)
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1.6 THE IMPORTANCE OF INFORMATION ON SAMPLING ERRORS

All statistical data, irrespective of their source and method of collection, are subject to errors of various types. It is
essential that results from censuses, surveys and other sources are accompanied by a description of their quality and
limitations. Information on data quality is required (i) for proper use and interpretation of the data, and (ii) for
evaluation and improvement of statistical design and procedures. Continued monitoring and improvement in quality
of the data generated are particularly important in the case of major undertakings such as national programmes of
household surveys, because such programmes are designed to generate data of great variety and complexity, and
constitute the only available source of information on many topics. It is only on the basis of detailed classification
by source and type that the variety of errors limiting data accuracy can be assessed and controlled. For a
comprehensive review of survey errors, the reader may consult United Nations (1982).

While survey data are subject to errors from diverse sources, information on sampling errors is of crucial importance
in the proper interpretation of the survey results, and in the rational design of sample surveys. Of course, sampling
error is only one component of the various types of errors in survey estimates, and not always the most important
component. By the same token, it is the lower (and more easily estimated) bound of the total error. A survey will
be useless if this component alone becomes loo large for the survey results to add useful information with any
measure of confidence to what is already known prior to the survey. Furthermore, survey estimates are typically
required not only for the whole population but also separately for many subgroups in the population. Generally the
relative magnitude of sampling error vis a vis other types of errors increases as we move from estimates for the total
population to estimates for individual subgroups and comparison between subgroups. Information on the magnitude
of sampling errors is therefore essential in deciding the degree of detail with which the survey data may be
meaningfully tabulated and analyzed.

Sampling error information is also essential for sample design and evaluation. For a given survey estimate, the
magnitude of its sampling error depends, among other factors, on sample size and on the sample design adopted, in
particular the extent to which units in the sample are clustered together and are homogeneous within clusters. To
reduce sampling error, it is necessary to increase sample size and/or to reduce the degree of clustering by scattering
the sample over more areas and o%'cr larger distances. At the same time, these very factors would increase survey
costs, and may also increase non-sampling biases due to the greater difficulties in quality control and supervision
resulting from the increased size of the operation. A balance is therefore required to minimise the total error within
given resources.

Statistical efficiency is just one of the factors involved - although one which cannot be ignored. While practical
constraints define, however narrowly, the class of feasible designs, choices have to be made within those on the basis
of efficiency in terms of costs and variances. Some of the ob%'ious questions to be considered relate to sample size,
allocation, clustering and stratification. For example:

Was (is) the sample size appropriate? Did the presence of large sampling errors preclude important survey
objectives being met? Or alternatively, could a smaller sample have met these objectives belter, perhaps by
permitting a greater control of non-sampling errors?

. Was the sample allocated appropriately between different reporting domains? Was the minimum sample
allocated to any domain large enough to meet the survey objectives? How did any disproportionate allocation
affect the efficiency of the overall design?
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. Was the degree of clustering of sample units too high, or too low, on the basis of its effect on costs, variances
and control of non-sampling errors? How much cost and trouble were saved by introducing additional sampling
stages, and what was Iheir contribution to the total sampling error?

. In terms of their sampling error, what were the most critical variables in determining sample size and design?

Generally the practical constraints are not rigorously binding in the sense of completely determining the sample
design; data relating to sampling errors and costs provide, at least in principle, the decisive evidence on important
aspects of design such as those noted above. Furthermore, even in the absence of data on costs, considerable progress
can be made by looking at sampling errors alone.

1.7 PRACTICAL METHODS FOR VARIANCE ESTIMATION

Given the complexity of the designs, and diversity and volume of statistics encountered in national household surveys,
procedures for computing sampling errors, to be practicable, must meet some basic requirements:

[1] First of all, the variance estimation procedure must take into account the actual, complex structure of
the design and estimation procedures since these aspects can greatly affect the magnitude of the
sampling errors involved.

[2] At the same time, however, the procedures should be general and flexible to be applicable to diverse
designs. This is particularly important in the case of national programmes of household surveys where
individual surveys may differ in design and procedures.

[3| The procedure should be convenient and economical for large scale application: for producing results
for diverse variables, type of statistics and subclasses in large, complex surveys.

[4] Generally, any compulation procedure requires some basic assumptions about the nature of the sample
design for the procedure to be applicable. Preferably these requirements should not be loo restrictive.
Even so, designs which have to be adopted in practice hardly ever meet these requirements exactly. It
is desirable therefore that the method adopted is reasonably robust against departures of the actual
design from the 'model' assumed in ihc computational method.

[5] The method should be economical in terms of the effort and cost involved, including technical as well
as computer resources.

[6] The procedure should have desirable staiislical properlies, such as small variance of the variance
estímales gcneraied, small bias and/or mean square error, and accuracy in ihe probability levels wilh
which ihe estimated confidence levels actually cover the populalion .parameters of interest. These
statistical requirements, however, need to be qualified in relation to the praciical requirements of
economy, generality and flexibility noicd above. The objeciive is not to seek theoretical perfection, but
practical methods with acceptable accuracy in relation to the uses made of the information on sampling
errors. Information on sampling errors can be useful in practice even if the degree of precision with

10



1.7 Praclical Methods for Variance Eslinialion

which errors for individual statistics are estimated is not high. The same criterion of the priority of
practicality over theoretical exactness should determine the choice among different methods.

[7] Finally, a most basic consideration in the choice of a method is the availability of suitable computer
software for its application. While larger and more developed statistical organizations are able to
develop and maintain their own software for meeting specific needs, organizations with fewer resources
often have to rely on general purpose software developed elsewhere. The availability and reliable
maintenance of such software can be a much more important consideration in the choice of a particular
approach to variance computation than moderate differences in the cost or theoretical properties of the
methods involved.

An additional desirable, though more difficult and not always feasible, objective concerns the decomposition of the
overall sampling error into its various components associated with different stages of sample selection and other
aspects of the design and estimation procedure. Such decomposition can be valuable in sample design. However,
priority generally has to be given to the economical production of overall magnitudes of the sampling error for diverse
variables and subclasses, over its analysis into components.

To meet the above requirement the main approach has been to develop general methods applicable 10 most statistics
and the diversity of designs encountered in large-scale sample surveys.

Clearly, the choice of the actual procedure has to be determined by the type of application required. In contrast 10
the silualion skelchcd above for household surveys in developing countries, we may also note for instance that , at
least in more developed countries with high percentage of households with telephones, smaller and simpler samples
are becoming common. In a sense, there is a shift in complexity away from ihe sample structure to more sophisticated
estimation procedures making greater use of auxiliary or external information to improve results of the sample survey.
This difference in emphasis can have a bearing on the approach to sampling error computation: ihe procedures
adopted may need to take into account more carefully, and to the exlcnl possible quant i fy separately, the effect of
various steps in the estimation procedure on precision of the results.

11





PART I
COMPUTATION





COMPUTING SAMPLING ERRORS:
COMPARISON AMONG PRIMARY SELECTIONS

2.1 INTRODUCTION

The basis of practical procedures: Replicated Variance Estimation

The theory of 'independent replicated variance estimators' (Mahalanobis, 1944) provides the basis for most practical
approaches to variance estimation, though in application to complex situations, additional assumptions and
approximations are involved. The basic theory may be stated as follows. Suppose that Vj are a set of random
uncorrelated variables with a common expectation Y. Then the mean y of n values y¡

has an expected value equal to Y, and its variance is given by:

var$) = s2ln; where s2 = J^fy-flVOi-l) (2-2)

The most obvious example of the above is a simple random sample (SRS) of elements selected with replacement,
where y. represent values of a certain variable for individual elements j. The same idea can be applied to the more
general situation when "j" refers not to individual elements but to any set of elements uncorrelated to others in the
sample, and "y," to any complex statistic defined for each set j. The requirement is that the y; are uncorrelated and
have a common expectation. In practice this means that the sets should be selected and observed independently,
following the same selection, measurement and estimation procedures.



2 Comparison Among Primary Selections

While the straightforward approach can be applied more or less as sketched above in certain situations (for example
in a sample with many units selected independently, at random), its application to practical designs generally requires
additional assumptions and approximations, resulting in various types of procedures. Essentially, variance estimation
requires partitioning a given sample to produce several comparable estimates of the same population parameter, the
variability among which provides a valid measure of the sampling error. Basic approaches to variance estimation can
be distinguished in terms of the manner in which the sample partitions to be compared are created.

Drawing on this basic idea, two broad practical approaches to the computation of sampling errors may be identified:

[1] Computation from comparisons among certain aggregates for primary selections within each stratum of
the sample.

[2] Computation from comparisons among estimates for replications of the sample, each of which reflects
the structure of the full sample, including its stratification.

This chapter is concerned with approach [1]. Various forms of application of the second approach will be discussed
in Chapter 3'.

Method [1] involves comparison among independent primary selections comprising the sample. The term primary
selection (PS) refers to the aggregate of elements selected within any primary sampling unit (PSU) in the sample.
(Other terms such as 'ultimate cluster' or 'replicate' have also been used for the same thing.) The basic model of the
method is that the sample is divided into independent partitions or strata, from each of which two or more
independent primary selections are made such that each selection or replicate provides a valid estimate of the slratum
total or a similar linear statistic. By linear statistic is meant a statistic which can be simply aggregated - with
appropriate weights as necessary - to the PSU level, then to the stratum level, and finally across strata to produce
the overall estimate or total for the survey population. Statistics such as ratios of two totals computed at lower levels
cannot be aggregated to higher levels in this way; hence they are termed non-linear statistics.

In the usual way, the mean square deviation between the independent estimates from the primary selections provides
a measure of variance within the slratum. The stratum estimates and variances can then be aggregated to produce
the corresponding quantities for the whole population. With independent primary selections, the details of the sample
design within PSUs do not complicate the variance estimation formulae, imparting great simplicity and generality to
this technique. Directly the method is applicable to linear statistics only; generalization to more complex (non-linear)
statistics requires linearisation approximations through which the complex statistics can be expressed as linear
functions of simple (linear) aggregates with constant coefficients. In view of the general application to ratios and other
complex statistics encountered in most surveys, the method is referred to as the linearisation method.

For good summaries of the various practical procedures for variance estimation, see Kallon (1977) and Rust (1985).

•Method [1] is known by various names such as 'linearisation', 'Taylor series', 'u l t imate clusters', or "primary selection comparison' (PSC)
method. Tile reasons behind some of ihese names will become clearer later in this chapter. While the last mentioned name; PSC, is most
appropriate in describing the basic approach, we will generally refer to the method as 'linearisation' in view of common usage of thai term in
the literature.
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2.2 Description of Hie Meihod

2.2 DESCRIPTION OF THE METHOD

Estimating Variance of a Linear Statistic

The basic assumptions about ihe sample design arc that

[1] The sample selection is independent between strata.

[2] Two or more primary selections are drawn from each stratum.

[3] These primary selections are drawn at random, independently and with replacement. This last condition
requires sampling with replacement at all stages, but can be partly relaxed as noted later.

Given independent sampling wilh-replaccment of two or more PS's per stratum, the simple replicated sampling theory
can be used to estimate the variance of linear statistics, such as a stratum total for a certain variable.

Consider a population total Y obtained by summing up individual values YhlJ for elements j over PSU i (giving the
PSU total Yhl), then over all PSUs in stratum h (giving the stratum total Yh), and finally over all strata in the
population:

The above is estimated by summing appropriately weighted values over the units in the sample. Firstly, the aggregate
from a primary selection is estimated by a weighted sum of values for individual elements in the sample:

y u = Ej^-yky

These are then summed over primary selections and strata to obtain an estimate y for the population total Y:

y - E, * - E* E, J- • E, E, E;

The quantities whlj are the weights associated with individual elements, determined in accordance with the estimation
procedure. The basic or 'design' weights are taken as inversely proportional to the probabilities of selection of
individual elements, but they may also involve other adjustments required in the process of estimation. The weights
can be scaled such that y estimates Y, actually or within a constant scaling factor. For the present purpose, the scale
is arbitrary and can be chosen as convenient. For instance in a self-weighting sample with a constant overall sampling
rate f = 1/F , individual weights may be taken as unity (so that the total y estimates Y/F), or as F (so that y estimates
Y), or as any other convenient constant. Similarly for a non-self-weighting sample, the individual weights may be
scaled such that their average per sample element is 1.0, or equals a uniform inflation factor such as F.

17



2 Comparison Among Primary Selections

In a similar manner, yh estimates the stratum total Y h . Each weighted PS value yhl estimates the quantity (Yh /ah),
as does their mean (yh /ah), where ah is the number of PSUs selected at random in stratum h. The variance of
individual PS estimates is estimated by the averaged squared quantities

and that of their total yh estimated from a random sample of size ah by:

(2.5)

Finally, with independent sampling across strata, we have

var(y) =

The remarkable and convenient feature of the above expression is that it involves only the appropriately weighted
PS totals yhl, without explicit reference to the structure and manner of sampling within PSUs. This makes the
variance estimation formula relatively simple, not requiring the computation of separate variance components in a
multi-stage design. This also gives the method great flexibility in handling diverse sampling designs, and is indeed one
of its major strengths and reasons for its widespread use in survey work.

Paired Selections

A particularly simple and useful special case of the above may be noied. With exactly two selections per s t ratum
(ah = 2), Equation (2.6) becomes

,>*- 9 V I v -LL\ + I v ^Ll - V (v -v Ï2 - V Av 2 (2-7)
^".¿^A KAV „ I KA2 -, I Z-.A V/u /M' Z^A "•'*

where Ayh is the difference between the two PS values in stratum h.

In many surveys, stratification of the PSUs is carried out to a point where exactly two units are selected from each
stratum, this being the minimum number required to estimate sampling errors. In practice the model is used even
more widely for the following reasons, (i) Often it is considered desirable to stratify to the maximum extent possible,
creating as many strata as the number of PSUs to be selected, or even more than that number using special
techniques such as 'controlled selection', (ii) Even more commonly, primary units are selected from ordered lists using
systematic sampling, which can be regarded as implicit stratification with one unit selected per implicit stratum. In
either of the above situations, variance compulation requires redefinition or 'collapsing' of the strata to ensure that
more than one sample PSUs is assigned to each stratum so redefined. The paired selection model provides the
minimum collapsing necessary. (Section 4.4.)

The two-psus-per-stratum model is sometimes referred to as the Keyfiiz method (Keyfitz, 1957), though 'paired
selections' is the more commonly used term.
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2.3 Extension lo Non-Linear Statistics

The Finite Population Correction

The above formulation is based on the assumption that sampling is with replacement at all stages. Usually sampling
is done without replacement and the above expressions need to be modified to take that feature into account. This
can be achieved in part using the concept of so-called 'ultimate clusters' (see Kalton, 1979, for a description). Suppose
that the sample is selected with replacement at all stages except the last; at the last stage ultimate units are selected
without replacement. We also assume thai the overall sampling rate (fh) is uniform wilhin each stratum. Such a
sampling scheme is equivalent to dividing the population exhaustively into what has been called 'ultimate clusters',
till all elements in the population have been accounted for, and selecting a simple random sample (without
replacement) of ah ultimate clusters with rate fh from each stratum h. The concept of ultimate clusters denotes - in
the same way as primary selections - the aggregate of elements included in the sample from one selection of a PSU,
and surmises the results of the series of operations involved in obtaining the final sample. With this model, the
variance estimation formula becomes

var(y) = o-/*).- (2.8)

The above takes into account the effect of sampling without replacement at the last stage, on the assumption that
sample elements have been selected with equal probability sampling of elements ('epsem'), throughout or within each
stratum separately. Sampling without replacement at higher stages is not taken into account. Also, more complicated
and approximate approaches may be required when clement selection probabilities vary more generally.
Kish (1965; p.432) proposes computing an effective sampling rate f as an appropriately weighted average of several
fg values which may exist in the sample for different components (g) of variance, the weights being proportional to
the corresponding components of total variance. Usually approximate weights suffice for the purpose. In any case,
in many national household surveys, neglecting the finite population correction is of no great practical consequence.

2.3 EXTENSION TO NON-LINEAR STATISTICS: VARIANCE OF RATIOS AND
DIFFERENCES BETWEEN RATIOS

2.3.1 RATIOS

The combined ratio estimator of two aggregates y and x

r = — (2.9)

is perhaps the most common statistic involved in survey analysis. Both the numerator (y) and denominator (x) may
be substantive random variables - as for example in the estimation of income per capita from a household survey,
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2 Comparison Among Primary Selections

where y is the total income and x the total number of persons estimated from the survey. Ordinary means, percentages
and proportions are special cases of ratios, and therefore need not be discussed separately. In the case of a mean, the
denominator is a count variable, ie xhlj is identically equal to 1 for all elements in the sample. This gives

y =

For a proportion (percentage) the additional condition is that yhij is a dichotomy equal to 1 (100) or 0 depending on
whether or not unit j possesses the characteristic whose proportion (percentage) is being estimated.

Linearisation

Estimation of variance for a non-linear statistic with the primary selection comparison method requires linearisation
of the estimator using Taylor approximation. For a ratio r = y/x this gives ihc well-known expression:

var(r) = — .[var(y) + r*.var(x) - 2r.cov(x,y)] (2.10)
x2

where var(y) and var(x) are as defined above, and cov(x,y) is given by a similar expression:

coV(x,y) = £ [(l-A).-.E f r f c - M » * - ) 1 (2-11)

This extension of the method to a non-linear statistic requires some further assumptions in addition to [1J-[3| noted
at the beginning of Section 2.2 above:

[4] The number of primary selections is large enough for valid use of the ratio estimator and the
linearisation approximation involved in the standard expression for ¡is variance.

[5] The quantities xhl in the denominator (which oficn correspond to the sample sizes per PSU; henceforth
referred to as the 'cluster sizes') are reasonably uniform in size within strata.

The last mentioned requirement is concerned wilh keeping the bias of the ratio estimator small. The relative bias in
r is given approximately by the expression:

bias(f)
r

_ cov(x,y)]
\

More important in practical terms is the observation that relative error of the denominator of the ratio, se(x)/x,
provides an upper bound for the bias in r. According to Kish (1965), ideally this relative error should be below 0.1,
and anyway should not exceed 0.2 when ratio estimation is used. Its value depends on the variability within strata of
the PS sizes ('cluster sizes'), as well on the number of primary selections in the sample. It is an objective of well-
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2.3 Extension to Non-linear Statistics

designed samples to keep the variability in these sizes small. The problem can be more serious in estimates for
subclasses of the population the selection of which cannot be fully controlled in the design of the sample.

Computational Simplification

A useful simplification is obtained by introducing the computational variable

'- *-» = £,-**,: z = £*z* = ° fry definition. (2.12)

This reduces var(r) to the same form as var(y) of a simple total:

™-W = E. n-f^ —- ̂  '' -—' (2'13)
* ^ /I

For a detailed treatment of variances of ratios and their differences, see Kish and Hess (1959). A numerical example
appears later in this section.

Computations for Subclasses

The above formulae can be used to compute variances of ratios estimated over subclasses of the sample: the
procedure is simply to exclude from all summations any units not belonging to the subclass of interest. However, two
types of complications can arise in moving from the total sample to subclasses.

[1] The appearance into the sample of many subclasses cannot be controlled. This can be the case in
particular of subclasses defined in terms of rare or ill-distributed characteristics of individual elements,
such as the level of education, occupation, or ethnic group of individual persons. Consequently, the
denominators x (which generally refer to the weighted count of subclass cases selected in the PSUs) may
become too variable, increasing the bias involved in the ratio estimation. In the extreme case (but by
no means a rare one for very small or not so well-distributed subclasses), the subclass sample may be
confined to a single PSU in some strata. Variance computation will then require (further) collapsing of
the strata to ensure that at least 2 primary selections are available from each redefined stratum.

[2] Many subclasses of interest are confined to only a subset of PSUs in the sample. This applies to highly
segregated classes, and especially to geographical domains (such as regions of a country), for each of
which separate results may be required. With reduced number of primary selections available for
computing sampling errors for such subclasses, the variability of the variance estimates is increased.
(Section 4.4.5).
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2 Comparison Among Primary Selections

2.3.2 DIFFERENCES BETWEEN RATIOS

Comparisons between different sub-populations or between samples at different times is also a common objective of
many surveys.

If the two ratios being compared

r = y/x, and r1 = y'/x'

come from independent samples or strata, the variance of their difference is simply the sum of their individual
variances.

However, in multi-stage designs the ratios being compared are usually estimated from sample elements coming from
the same PSUs and their covariances must be taken into account. For the difference of two ratios

the standard expression for variance is

varir-r1) = var(r) + var(r') - 2.cov(r,r') (2-14)

where var(r) and var(r') are as defined earlier, and

cov(r,r') = —— [covfyj'^r.r'.co^x^-r.coviy'rt-r'.coviys')] (2.15)
JCJC

As before, all terms involved above are computed from sample values appropriately weighted and aggregated to the
PS level.

Also by introducing

the expression for var(r-r') can be greatly simplified and reduced to exactly the same form as that for var(y) of a
simple aggregate:
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2.3 Extension to Non-linear Statistics

ILLUSTRATION 2A NUMERICAL EXAMPLE OF THE COMPUTATIONAL PROCEDURE

The computational formulae above can be most clearly illustrated by considering a small sample with 2 PSUs per
stratum (the paired selection model). The following example is based on Kish (1965, Sec. 6.5; also discussed in Kish,
1989, Chapter 13).

Quantities yhl and yh, are the weighted estimates from the two primary selections in stratum h, and Ayh = yhl - yh2

their difference. Similar quantities are defined for variable x. The summations are taken over all strata h. Estimates
of the two totals (y=149; x=255) are given in the totals row of Table 2A.(1). columns [1] and [4] respectively. With
paired selection, their variances and covariances are given by the simple expressions (which also appears in the totals
row of the table):

v^(y) = E[>A;-yA2f = EA>* (=217;«>/[3])

v«r(x) = Eh,r*«f = EAJC* (=475;co/[6])

E A^-Ay* (=293;co/[7])

For the ratio r = y/x = 149/255 = Ü.58, we del'ine

The result is shown in col[8J; note that by definition, the sum z = Q.

Next, var(r) can be computed from

wto = -,[ E An + '2-E A*í - 2'-E A**-Ay

=— M 217 + 0.582*475 - 2*0.58*293] = 5.65*1Q-4

2S52

or alternatively, making use of the computational simplification explained above, from

where the Az,, values can be computed in either of the two forms:

-

The two forms give identical results (col[9] ). The totals row of col[10] gives var(r) computed according to eq.(ii).

23



2 Comparison Among Primary Selections

Similarly, Table 2A.(2) gives the results for the second pair of variables (y' and x').

For the difference of two ratios

(r-r>) .y.iL (=W_TL =
x xi 255 156

we have var(r-r') = var(r) + var(r') - 2.cov(r,r'). The two variance terms are computed as above, and cov as

cov(r/) = '
—— l- —— \ 120 +• 0.58*0.49*219 - 0.58*196 - 0.49*83 1 = 6.96*10-" ...(¿¿0
255*156L J

This can be simplified for computations as

covO-/) = £ [Az4.Azí] (¡v)

The results appear in the totals row of col[15]. G:>1[16] shows the quanlilies zh," (adding to zero by definition). The
quantities Azh" can be computed from cols|9] of Tables 2A.(1) and (2), or from col [16] - ie, using cither of the
following two equivalent forms:

Their identical result appears in col[16J. Written in terms of these quantities, the expression for var(r-r') is greatly
simplified, though it docs not show the contribution of its different components:

" 2Az",

The results are given in the totals row of col[18].

Note that for computational accuracy and convenience in Table 2A, quantities like z and their differences Az are
shown multiplied by the factor 102, this factor being the order of magnitude of the denominator total x; this makes
the scale of quantities like z as used in the computation similar to that of the estimated ratio r = y/x. The square of
these quantities, and hence var(r), are multiplied by 10\ Note also that though the figures below have been printed
to two decimal places, the actual computations were done to much higher accuracy.
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TABLE 2A. ILLUSTRATION OF THE COMPUTATIONAL PROCEDURE.

(1) Variables n and y

[1] [2] L3] [5] [6] [7] [8] [9] [10]

11
2

21
2

31
2

41
2

51
2

61
2

71
2

81
2

91
2

01
2

DUO—

r = 0.!
var(r)

Co limn

11
9 2

8
6 2

6
15 -9

13
5 8

9
4 5

4
7 -3

5
7 -2

4
5 -1

9
9 0

9
4 5

149 7
y

Í8;
= 5.65*1(T

headings:

19
4 16 3 9

10
4 10 0 0

13
81 20 -7 49

23
64 8 15 225

13
25 6 7 49

10
9 13 -3 9

7
4 10 -3 9

8
1 12 -4 16

12
0 15 -3 9

20
25 10 10 100

217 255 15 475
var(y) x var(x)

(Confuted from equation (i)).

-0.04
6 -0.14

0.85
0 0.06

-0.63
63 1.30

-0.17
120 0.13

0.55
35 0.19

-0.72
9 -0.23

0.36
6 0.45

-0.26
4 -0.79

0.78
0 0.09

-1.05
50 -0.72

293 0.00
cov(x.y)

0.10

0.78

-1.93

-0.30

0.36

-0.49

-0.10

0.52

0.69

-0.33

-0.69

0.01

0.00
0.62

0.00
3.71

0.00
0.09

0.00
0.13

0.00
0.24

0.00
0.01

0.00
0.28

0.00
0.47

0.00
0.11

5.65
var(r)

[I]= yhi; [2] = Ayh; [3]= Ayh~ in stratum h unit i; similarly [4] - [6] for x.

[7]= Axh.Ayh; [8]= zhl; [9]= Azh; [10]= Azh
2.

[II]= Axh.Ayh; [12] = Ax,,.Axh ' ; [13]= Axh .Ayh ' ; [14]= ixb'.Ayh.

[15]= Az h .Az h ' ; [161= zhl"; [17]= 4zh"; [18]= (¿zh»)z.

(Table continued)

25



Table 2A (cont.)

(2) Variables x1 and y1

[1] [2] [3] [5] [6] [8] [9] [10]

11
2

21
2

31
2

41
2

51
2

61
2

71
2

81
2

91
2

01
2

SUH=

(3)

5
6
1
7
2
9
7
4
3
1
6
2
3
3
0
4
2
1

10
1

77
y1

-1

-6

-7

3

2

4

0

-4

1

9

1

r1

var(r'

1

36

49

9

4

16

0

16

1

81

213
var(y')

') =

12
9
1

13
10
10
12
6
5
6

. 13
4
6
4
1

10
13

1
18
2

156
X1

0.49
36.24-10"1

Computations for the difference

[11]

1 1
2

2 1
2

3 1
2

4 1
2

5 1
2

6 1
2

7 1
2

8 1
2

9 1
2

0 1
2

SUH=

-2

-12

63

24

10

-12

0

4

0

45

120

[12]

9

0

0

90

-7

-27

-6

36

-3

160

219

[13] [14]

-3

0

49

45

14

-12

0

16

-3

90

196

6

-24

0

48

-5

-27

-4

9

0

80

83

3 9

-12 144

0 0

6 36

-1 1

9 81

2 4

-9 ' 81

12 144

16 256

26 756
var(x')

(Computed

of ratios

[15]

0.55
-0.15
0.52

-0.04
1.26
8.64

-0.86
-0.01
0.21
0.57

-0.46
0.14
0.33
0.06
0.05
0.15
3.61

-2.17
-1.77
-0.23

6.96
cov(r,r')

-0.59
-3 1.00

0.32
72 0.37

-1.88
0 2.61

0.69
18 0.67

0.34
-2 -1.26

-0.27
36 0.02

0.02
0 0.66

-0.32
36 -0.60

-2.83
12 0.32

0.71
144 0.01

313 0.00
cov(x'y')

from equation (i)).

[16] [17]

-1.14 1.69

-0.31 0.83

-1.31 2.56

-0.54 -0.32

1.45 -1.24 '

-0.25 -0.21

-0.20 0.54

-0.19 0.24

-0.23 3.84

-0.73 -1.04

0.00 6.89

-1.59 2.53

-0.05 0.00

-4.49 20.13

0.02 0.00

1.60 2.56

-0.28 0.08

-0.63 0.40

0.28 0.08

-3.16 9.96

0.71 0.50

-7.59 36.24
var(r')

[18]

2.85

0.69

6.56

0.11

1.54

0.04

0.29

0.06

14.77

1.08

27.99
var(r-r' )

= 0.09
cov(r.r') = 6 from equation (iii)).covcr.r1} = 6.V6icomputea trom equation (in;;.
var(r-r') = 27.99(Computed from the full expressions (i) and (iii)).
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2.4 GENERALIZATION TO OTHER COMPLEX STATISTICS

The above are particular examples of the approach of linearisation of non-linear statistics using Taylor expansion..
In general terms, suppose the objective is to estimate the variance of a statistic which is a non-linear function of.
aggregates Y, to Y, :

2 = A y,. Yf...., Y, )

which is estimated from the sample by z defined in the same form

z = A 3V V-, y, )

where the y's are sample aggregates estimating the corresponding population totals Y's. To terms of the first degree
in (z-Z), the Taylor series approximation for z assumed close to (in the neighbourhood of) Z is

^ Z + EtOvW: Dk=dZldYt

where the partial derivatives Dk are evaluated at z=Z and taken as constants.

The above, with the added assumption that the unknown constants Dk can be replaced by their sample estimates dt,
gives

Varia = Var<£Dk.yk) = KwiE<W = VardJ (2-17)

The above means that variance of non-linear z can be approximated by that of ZL, a linear function of the simple
aggregates yk,

giving the general expression:

The above expression involves a sXs covariance matrix of simple aggregates yk (k=l..s), with s variance terms and
s(s-l)/2 pairs of identical covariance terms. These can be evaluated from expressions of the form given earlier for
linear statistics. As an example, consider an ordinary ratio z = y,^, for which

4 = dz¡dyl = l/y2;
dï = dzjdy2 = -zjyl;

—
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2 Comparison Among Primary- Selections

The expression above is exactly the same as the expression (2.10) given earlier for var(r), observing that here

?! = y, y2 = x. and z = r

in terms of the notation used earlier.

Computational Simplification

The general expression for variance can be greatly simplified for computational purposes observing the following,
based on Woodruff (1971), building on the work of Kcyfiiz (1957) and Kish (1968). In the linear statistic ZL, the
aggregates yk are by definition (appropriately weighted) sums of PS estimates

>'* = EW^M.-

which means that

Noting that dk are constants not dependent on (h,i), the order of summation over k and (h,i) can be reversed giving

It follows that z, can also be written as the simple aggregate of quantities computed at the PS level, namely of
quantities

'*, = E^M, where dk-dZ/dYk atZ = z; z, = £,zw (2.19)

resulting in the concise expression for var(z), without ihc need to work out the full covariance matrix:

= var(zL) = (2.20)

It only remains to develop the expressions for and numerically evaluate the partial derivatives of the estimate z from
the sample data.

Particular Applications

Below are examples of particular applicalions of the above to various non-linear estimators (z) encountered in
practical survey work. All that is necessary is to specify the quantities zhl to be formed at the PS level in each case.
To present the expression more concisely, the following abbreviated notation has been used:
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2.4 Generalisation io Other Complex Statistics

In the notation, y, x, y', x' etc denote simple aggregates; yhl etc the corresponding PS values, and z the statistic of
interest such as a ratio z = y/x. Note that the PS values are appropriately weighted estimates; for example

giving yk = ̂ ¡y^ y = L,hyh-

The first two cases of the following have already been considered in more detail.

[1] Ordinary ratio

fc- = ta.

[2] Difference of two ratios

z = r-r' = y¡x - >'/*'; zfc = lta--l'K

[3] A weighted sum of ratios

[4] Ratio of ratios ("double ratio')

z = r/r' = 1 I 4 Zfc. = X

[5] Product of ratios
For the product of two ratios

/ y y'= r.r' = ¿ . Í-;

«. • '•-.
More generally, for any product of ratios:
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2 Comparison Among Primary Seleclions

[6] A weighted sum of double ratios

* = E* ̂ -7- =

Double ratios appear for example when we consider ratio of indices (which are themselves ratios) for two periods -
as in the relative of any current year which is the ratio of some index for that year to the index for some base year.

Estimates of such relatives may be differenced, averaged or otherwise combined from different periods or samples,
and so on. This gives rise to the general form [6]; forms [1] to [5] above are special cases of this. For a detailed
treatment of standard errors of such indexes, see Kish (1968).

[7] A statistic such as the regression coefficient, expressed as

z = E/U, "W** / E/u; "HI**, •

This can be handled in a similar way by first defining at the level of individual elements (j) the following two variables

which can be aggregated over the PS's and strata in the usual way:

and a similar expression for v. This gives z in the form of the ratio u/v, so that

--

Tepping (1968) provides a general description of the approach and among other things, shows how variances of
multiple regression coefficients may be estimated.
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2.5 APPLICATION OF THE METHOD IN PRACTICE

Though the basic assumptions regarding the structure of the sample for application of the method are met reasonably
well in many large-scale national household surveys, often the assumptions are not met exactly. Some of the more
common approximations and how they may be dealt with in practice are noted below, with some examples. The issues
will be discussed more fully in Chapter 4.

Systematic sampling.

Systematic sampling of primary units ¡s a common and convenient procedure. Pairing of adjacent units to form strata
to be used in the compulations is the usual practice, resulting in the paired selection model noted earlier. Of course
this results in some over-estimation of variance, to the extent the possible gain of ordering of the pairof units in each
'collapsed stratum' is disregarded. While this over-estimation is not avoided, variance of the variance estimator can
be reduced (by a factor of 3/4) by using an alternative scheme of grouping of the units. This scheme is to utilize all
(a-1) successive differences in the ordered list of a primary units, in place of only the a/2 comparisons among non-
overlapping pairs. With this, the basic expression for variance becomes

var(y) =

Deep stratification.

Often stratification is carried to a point where only one or even less than one primary un i t is selected per stratum.
This requires collapsing of similar strala to define new strata such that each contains at leasi two selections, which
are then assumed to be independent. Such collapsing or grouping must be done on the basis of (similarity in)
characteristics of the strata, and not of the particular units which happen to be selected. Otherwise the variance could
be seriously underestimated.

Small and numerous primary selections.

Sometimes the primary units are too small, variable or otherwise inappropriate to be used directly in the variance
estimation formulae. More suitable computational units may be defined by such techniques as random grouping of
units within strala, and l inking or combining of units across strata.

ILLUSTRATION 2B SOME EXAMPLES

Variance estimation from comparison among primary selections is perhaps the most widely used method in practical
survey work. The following are just two examples which bring out some of the points noted in the previous section
concerning the definition of the sample structure and computing units for application of the method. The following
examples are based on two national surveys, in Sri Lanka and Malaysia, both conducted under the World Fertility
Survey programme some years ago.
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Example 1 (Sri Lanka).

The survey involved a iwo stage sample of households. At the first stage census enumeration areas (EAs) were
selected systematically with probability proportional to population size from geographically ordered lists stratified by
region, type of place and a hierarchy of administrative divisions within each region. From roughly 50 explicit strata,
a sample of 700 PSUs was selected such that the resulting sample of households was self-weighting within each region.
However, to compensate for non-response and other shortcomings in implementation, additional weights were
introduced at the PSU level. The number of households selected per PSU was small, averaging around 10, but there
was also a fair amount of variability around that average. By merging small PS's with others in the sample, around
400 somewhat larger and more uniform computing units were formed. Within each explicit stratum, adjacent newly
defined units were paired to form around 200 'computing strata', and the two units wi th in each such stratum were
assumed to have been selected independently with replacement. (The overall sampling rale was small enough for the
finite population correction to be negligible.) As a good practice, the survey data files contained codification of the
strata and primary units as defined above for computational purposes, as well as the final estimation weights to be
applied to individual elements in the sample. Most statistics of interest were in the form of combined ratios, for which
the paired selection model could be applied over the 200 computing strata; an alternative would have been to use
successive differences between adjacent uni ts following their order of selection, separately within each of the 50
explicit strata.

Example 2 (Malaysia).

The survey population was divided into two sampling domains with very different designs. In the urban domain a
single stage systematic sample of around 1500 dwellings was selected from geographically ordered lists. In rural areas
a sample of around 4500 households was selected in two or three stages, s t a r t ing with a sample of 100 localities at
the first stage. For this purpose the rural sector was divided into 100 explicit strata, so as to select one locality (PSU)
per stratum.

The construction of suitable computing strata and units (primary selections) required a number of steps. In the urban
sector the single stage sample of dwellings was divided into 30 zones, each zone containing around 50 adjacent
dwellings from the ordered list. These zones served as the computing strata. Within each zone, sample dwellings were
allocated alternatively to form two computing units. Such a system is expected to reflect the actual systematic selection
of dwellings.

In the rural domain, strata were examined on the basis of information available prior to sample selection, and paired
on the basis of certain characteristics related to the subject matter of the survey. (Ideally, such pairing of strata should
be done before sample selection to avoid subjective bias.) Each pair so defined constituted a computing stratum, and
the sample of two localities within each gave the pair of primary selections for the purpose of variance estimation.

It may be mentioned that in practice, difficulties were encountered in computing sampling errors because information
on characteristics of the original strata (not only the selected PSUs), required for their pairing, was not adequately
documented. This brings out the importance of the often noted point that it is essential to preserve a full description
of the sample structure, preferably as an integral part of the survey data files.
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2.6 TECHNICAL NOTE ON THE BASIS OF THE METHOD

In a multistage design, each stage of sampling contributes to the overall variance of the survey estimate. Some survey
practitioners may have the mistaken impression that computing variances simply from a comparison among estimates
at the PSU level amounts to neglecting the contribution to variance of sampling at stages below the first stage of
selection. While the derivation of the basic results of sampling theory is outside the scope of this Technical Study,
the following discussion in the context of a simple two-stage design is presented to clarify the basis of the method
described in this chapter. Of course, the results are available in more detail in many good text books on sampling.
(See for example, Kish 1965, Section 5.6.)

To understand the basics, we consider a population of clusters of equal size (B), with a two stage design consisting
of a random selection of (a out of A) clusters, followed by the selection of a constant number (b out of B) of
elements within each selected cluster. The overall sampling rate f = ab/AB = n/N is constant for all elements in the
population.

Firstly, it can be seen that for a population divided into clusters, the variability between elements in the population

can be decomposed into two components:

[1] the bctween-cluster component

[2] and the within-cluster component

giving

2
ab

In the context of survey sampling, we use slightly different quantities

o2 N 2. C2 A 2. c2 _ B 2
"J = —————-O . J- = — — — — — - O - , Jt = — — — — — . O í ,

N-l ' A-l ° " B-l "

in terms of which the above decomposition can be approximated as:
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B '

on the reasonable assumption that N and A (respectively the number of elements and PSUs in the population) are
large.

With the two stage design imposed on this population, the two components of variance of an estimate such as the
sample mean are:

[1] the belwecn-clustcr component

= M-£^ (2-23)

[2] and the within-cluster component, which for a sample of b elements from a single cluster would be

so that for the actual sample of a clusters it becomes

• O • <2-24)

Total variance is the sum of the two components:

Var® = (l-£). + (1-4— (2'25)

A a B a.b

To estimate these components from the sample, we define similar quantities (with the summations over the sample)

*? = 2»y}2/(*-i) (2-26)

and

*2 = -)2/[a(*-i)]. (2-27)
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The second quantity is based on a simple random sample within each cluster, and hence provides an unbiased estimate
of the corresponding population value for the within-cluster component:

Eta = S\ (2-28)

However, the first quantity is not simply an estimate of the between-cluster component: it reflects that variability as
well as the additional variability resulting from the fact that it is based only on a subsample of elements within each
cluster. It can be shown that its expected value is given by the following.

B

Substituting into Equation (2.25), it is seen thai an approximately unbiased estimate of variance is provided by

var® . (1_^)í m(l.fi*lt (2.30)
AB a a

the approximation involved in the above expression being :

a b *l-s]lb
A B a

which is small, especially in national samples where the first stage sampling rate (a/A) is small.

The implication of the above result can be generalized to many practical multi-stage designs involving complex
subsampling within PSUs of variable sizes. Therefore, it is a result of great practical utility; it indicates that good
estimates of the total variance can be provided simply by certain sample quantities aggregated to the level of PSUs,
without explicitly involving any reference to the complexity of subsampling within the primary units. Of course the
subsampling does influence efficiency of the resulting sample, but its effect is largely incorporated in the sa

: term
computed from the sample values. With variable cluster sizes and sample takes, generally sample aggregates (rather
than cluster means per element) are estimated first, and then proportions or means etc are estimated as ratios of the
relevant aggregates. For these, variances are given by expression like (2.8) and (2.13).

Some discussion on variance components in the context of a general, more complex sampling design is given in
Section 5.6 below.
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COMPUTING SAMPLING ERRORS:
COMPARISON AMONG SAMPLE REPLICATIONS

3.1 INTRODUCTION

The idea of replicated variance estimation was introduced in Section 2.1. In the linearisation method described in the
preceding chapter, the primary selections are taken as the replicates and their sampling variability computed within
each stratum separately, and then aggregated across the strata. The alternative approach is to consider replications
of the full sample, each of which is of the same design and reflects full complexity of the sample, including its
stratification, and provides a valid estimate of the statistic of interest. A replication differs from the full sample only
in sample size. However, to be useful in the present context, the size of each replication needs to be large enough:

[1] for it to reflect the structure of the full sample, and

[2] for any estimate based on a single replication to be close to the corresponding estimate based on the
full sample.

The approach involves division of the fu l l sample, by design or subsequent to selection in some manner, into a set
of replications each of the same design. Using the same estimation procedure, estimates yt for each replication, their
average y(Eq. 2.1), and the corresponding estimate from the full sample are obtained. The form of the estimators
can be of any complexity: it may for example be a population total, a ratio, a combination or function of ratios,
regression or correlation coefficients etc; it may relate to the total population, or to any subclass of the.population
distributed across the replications. We will denote the full sample estimate as y for the linear case, and as y for
the non-linear case.



3 Comparison Among Sample Replications

The replications are normally constructed such that among them they cover all the units in the sample, each unit once
or the same constant number of times. This means that for a linear statistic - ie an estimate which is a linear function
of the sample values - the replicated average y is the same as the full-sample estimate y. However, for non-linear
estimators (which are the main reason for using the method), the two are not necessarily the same. This is illustrated
by the following simple example. For the ratio y of two sample aggregates X[ and x,, we have the estimate from
replication j

y,'%

giving the average of replicated estimates as

~ = -Y = iy fy

while the full-sample estimate is

IX
The two are not the same, since the former is the average of separate ratios while the latter is a combined ratio.

The main attraction of the replication comparison method to variance estimation arises from the fact that , with
sufficiently large and complex replications each reflecting the ful l sample, the estimates yt from individual replications,
and even more so their average y , are expected to be close to ihe same estimate based on ihe ful l sample. This is
the case exactly in relation to a linear statistic such as a sample total (y), but approximately also the case for a non-
linear estimate ( y ) of any complexity based on the full sample. This also applies to the closeness between the
variance of the simple average of replicated values, var(y), and var(y) of the full-sample estimate of interest. This
means that if the former can be obtained, it can be used to approximate ihe latter, irrespective of the complexity of
the estimate y . Practical application of this very convenient approach has two requirements, in addition to
[1] and [2] noted above regarding the size and structure of each replication to reflect the full sample, namely:

[3] that a procedure is established to estimate var(y), which is then used to approximate varíy) ;

|4J and that the number of replications used is sufficiently large to yield a variance estimate with adequate
precision.

Within the group of methods based on comparison among replications, two quite distinct approaches may be noted:

A. a comparison among estimates based on independent replications which together comprise the full
sample; and

B. a comparison among estimates based on overlapping 'pseudo' or repealed replications, constructed by
repeated resampling of the same parent (ful l) sample.
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Method [A] is based on the assumption lhai the parent sample can be regarded as consisting of a number of
independent replications or subsamples, each reflecting the full complexity of the parent sample, differing from it only
in size. With these assumptions the replicaied estimates can be regarded as independent and identically distributed
(1DD) random variables, so lhai Ihe variability among them gives in a very simple form, a measure of variance of the
overall sample estimator. The limitation of the method is that in many situations the total sample cannot be divided
into a sufficient number of independent replications of adequate size for the method to be applicable; its strength
is its simplicity when applicable. The method is discussed with illustrations in Section 3.2.

Method [B] refers to the family of resampling methods for computing sampling errors for complex designs and
statistics in which the replications to be compared are generated through repeated resampling of the same parent
sample. Each replication is designed to reflect the full complexity of the parent sample. In contrast to the independent
replication method whose limitations the resampling methods are designed to overcome, the resampling methods are
based on overlapping replications which reuse the sample selections in several (many) computing units. With repeated
resampling the variance estimates are made more stable through averaging over many subsamples. However, since
the replications generated are nol independent, special procedures are required to control the bias in the variance
estimates provided by their comparison.

Various resampling procedures have been developed which differ in the manner in which replications are generated
from the parent sample and the corresponding variance estimation formulae evoked. Three general procedures known
as the balanced repeated replication (BRR), jackknifc repeated replication (JRR), and the bootstrap are available,
though the last is nol yet established for general use in the presence of complex selection methods. Generally, the
resampling methods can more easily deal with complex statistics and estimation procedures in comparison with other
methods. However, they tend lo be technically and computationally more complex; they are also somewhat more
restrictive in the sample designs handled in comparison with the linearisation approach of Chapter 2. In relation to
statistical properties of the variance estimates produced, the three methods - linearisation, BRR and JRR - have been
found to yield comparable and generally satisfactory results in complex situations (Section 4.3). The basic difference
between JRR and BRR may be slated as follows. With JRR, a replication is formed by dropping a small part of the
tola! sample, such as a single PSU in one stratum; consequently each replication measures the contribution of a small
part such as a single stratum. In BRR, a replication is formed by dropping a part (such as one half) of every stratum-
and it measures ihe variance of the entire sample. Comparing BRR and JRR, the former generally requires less
computational effort, but can have two major disadvantages: ii is technically more complex; and more importantly,
it lends to be more restrictive in the type of sample designs handled. For these reasons, JRR is the preferred
approach. However, a certain lack of readily available general purpose computer software is a disadvantage common
lo the resampling meihods at present.

3.2 VARIANCE FROM INDEPENDENT REPLICATIONS

3.2.1 THE PROCEDURE

The basic requirement of the meihod is that, by design or subsequent 10 sample seleelion, it should be possible to
divide the parent sample inlo more or less independent replications, each with essentially the same design as the
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parent sample. In a multistage design, for example, the parent sample has to be divided at the level of the PSUs, ie
divided exhaustively into a number of non-overlapping replications each consisting of a separate independently
selected (and ideally also independently enumerated) set of PSUs. For a combined estimation over a number of strata,
each replication must itself be a stratified sample covering all the strata.

With independent replications, each providing a valid estimate of the same population parameter of interest, the
results of the theory of 'independent replicated variance estimator' noted in Section 2.1 can be directly applied. The
variance of the simple average of n replicated estimates y;

^-^ . -^ i

(3.1)
n-l

provides an estimate of the variance of the same estimate from the full sample, exactly for a linear estimate y, or
approximately for a non-linear estimate y. A somewhat conservative estimator (giving higher value) is obtained by
replacing y in the summation by y ; that is by writing:

vatfy) = —.
n n-l

(3.2)

The above may be modified to incorporate the finite population correction if that is important. With a uniform
overall sampling rate f for the full sample, this amounts to inserting the factor (1-f) on the right hand side. With
variable sampling rates, a simple approach would be to lake "(l-f)" above as an appropriately averaged value (see
Section 2.2).

3.2.2 CONSTRUCTING INDEPENDENT REPLICATIONS

It is useful to begin by stating the requirements which should be met ideally in application of the procedure. The
basic requirement is that the parent (full) sample is composed of a number of independent subsamples or replications,
each with the same design and procedures, but selected and implemented independently. The requirement of common
and independent procedures applies to sample selection as well as to data collection and estimation.

1. Sample Selection. The replications should be designed according to the same sample design, on the basis of
the same frame and type of units, system of stratification, sampling stages and selection methods, etc. as the
parent sample. In drawing several replications from the same population, independence requires that each
replication is replaced into the frame before the next is drawn and the randomised selection procedure is
applied separately for each selection.

2. Data Collection. Following sample selection, the procedure for data collection should be the same and applied
independently for each replication. Data collection refers to various steps in the whole measurement process,
including questionnaire design, staff recruitment and training, mode and procedures for data-collection,
fieldwork organisation, supervision and control, recording and coding of responses, data entry, and so on.
Independent application of common data collection procedures requires, for example, that independent sets
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of field staff (supervisors, interviewers, coders, etc) drawn in principle from a common pool, are used for
different replications.

3. Estimation. A common estimation procedure refers not only to the mathematical form of the particular
estimator used, but also to all the other steps involved in computing the final estimates from the survey data
- steps such as data editing, imputation, treatment of outliers, weighting and other adjustments. Independent
application means that all steps in the estimation procedure are applied separately to each replication. For
example, if the sample data are weighted to agree with certain population control totals, it is implied that the
relevant weights are determined independently for each replicated subsample, as distinct from using a common
set of weights determined on the basis of the full data set.

3.2.3 APPLICATION IN PRACTICE

Approximation to Independent Replications

In practice the above requirements are rarely met exactly. For instance, if the estimation procedure is complex,
repeating all its steps for each replication can be too expensive and lime consuming. Hence while separate estimates
arc produced for each replication (as must be done for ihe variance estimation procedure lo be applied), some steps
in the procedure - such as imputation, weighting, and adjustment of the results againsi external control totals - are
applied only once to the sample as a whole. The results can be different if these steps were applied to the sample
results from each replication separately and independently. Strict independence of data collection procedures is even
more difficult to implement. That would require organisation and implementation of numerous steps in the
measurement process independently for each replication, possibly involving a great increase in cost and inconvenience.
(Some such separation in an appropriate form can of course be useful in the assessment of non-sampling errors.)

Perhaps the most critical requirement is that of independent selection of replications following the same design.
Ideally, the full sample may be formed by combining independent subsamples. Usually, however, it is" a matter of
partitioning an existing sample into more or less independent subsamples. It is important lo note that in a multistage
design, the partitioning of the sample should be done at the level of primary selection, ie all sample elements within
a PS should be assigned lo ihe same replication. To estimate the total variance across strata in a stratified sample,
each replication must itself be a stratified sample parallelling the parent sample.

The sample may be divided into replications at the time of selection or subsequently, after selection. Consider for
instance a systematic sample in which primary units are to be selected with interval I; the sample may be selected in
the form of n replications, each selected systematically with a distinct random start and selection interval = (n.I).
A more convenient and common alternative is to select the full sample in one operation, but in such a way that it
can be subsequently divided into subsamples which are by and large independent and refleci the design of the full
sample. As an example, consider a systematic sample of 500 PSUs to be divided into 20 replications each of size
500/20 = 25 PSUs. One may imagine an ordered list of the 500 sample units as divided into 25 'zones', each
comprised of 20 adjacent units. A replication would consist of one unit taken from each zone: for instance the first
unit from each zone forming the first replication, the second unit from each zone forming the second replication, and
so on. In fact, such a simple scheme can be applied with great flexibility and permits many straightforward variations.
The units in the full sample may have been selected with uniform or varying probabilities: the above subsampling

41



3 Comparison Among Sample Replications

scheme retains the original relative probabilities of selection. If the original sample is stratified, one may order the
selected units stratum after stratum and divide the entire list into equal zones for the application of the above
procedure. The effect of original stratification will be reflected in the replications if the number of units to be
selected is large enough for all or most strata to be represented in each replication. Alternatively, units may be
cross-classified by zone and stratum, ie each stratum divided into a number of zones and each zone linking units
(sample PSUs) across a number of strata. Deming (1960) provides many examples and extensions of such procedures.

Choice of the Number of Replications

In most multistage designs the number of primary selections involved is limited, which constrains the number of
replications into which the sample may be divided. There are of course samples in which the total number of PSs
available is so inadequate that the number of replications and the number of units per replication both have to be
rather small. In that situation the method of independent replication is inappropriate for variance csiimation.
However, when the sample design permits, choice still has to be made between the extremes of having many small
replications, or having only a few but large replications. If many replications are created, the number of PSs per
replication may become too small to reflect the structure of the full sample. This will tend to bias the variance
estimation. On the other hand variances estimated from only a small number of replications tend to be unstable, ie
themselves subject to large variance. There is no agreement as to the most appropriate choice in general terms. Kish
(1965, Section 4.4), for example, summarises (he situation as follows: "Mahalanobis (1946) and Lahiri (1958) have
frequently employed 4 replicates... Tukey and Deming (1960) have often used 10 replicates... Jones (1956) presents
reasons and rules for using 25 to 50 replicates. Generally I too favour a large number perhaps between 20 and 100."

The primary argument in favour of having many replications (each necessarily comprised of a correspondingly small
number of units) is that the variance estimator (equation 3.1) is more precise and the statist ic y (average of the
replicated estimates) is more nearly normally distributed. The precision of the variance estimator decreases as the
number of replications is reduced. Furthermore, for a given value of variance or standard error, the interval
associated with any given level of confidence becomes wider. This is because with n replications, estimate var(y)
is based on (n-1) "degrees of freedom", and in constructing the confidence interval for the population parameter in
the form

y ± f.[

the value of l (and hence the width of the above interval) corresponding to any given level of confidence increases
with decreasing n. This can be seen from the standard Studcnt-l distribution. Another consideration is thai with a
small number of replications, it is necessary to assume that the individual replicated estimates yj are normally
distributed, though mild departures from normality arc generally not important; fortunately the assumption of
normality of ^ is improved as the number of primary selections per replication is increased. In any case, when the
number of replications is large, it is necessary to assume only that the mean y is normally distributed.

On the other hand, having fewer and larger replications also has some statistical advantages. (1) With large sample
size per replication, the individual replicated estimates yt are more stable and more nearly normally distributed. This
helps in inference. (2) The replicated estimates y,, and even more so their average y is closer to the estimate^
based on the full sample for non-linear statistics as well. This facilitates extension of the method of variance
estimation to non-linear statistics, which is the main justification for its use. (3) Most importantly, increasing the
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number of primary units per replication makes it easier to reflect the structure of the full sample in each replication,
which reduces the bias in the variance estimator.

Also should be noted some practical considerations and wider objectives for opting for a smaller number of
replications, each consequently larger and potentially more complex in design: (4) With fewer replications, there is
less disturbance of the overall design as a result of the need to select the sample in the form of independent
replications. (5) The additional cost and difficulty involved in separate measurement and estimation is smaller.
(6) With a smaller number of replications, it is more feasible to appropriately randomise the work allocation of
interviewers, coders, etc to measure non-sampling components of variance. (7) Replicated or 'interpenetrating' designs
can be useful for more general checking of survey procedures and results. These objectives are better served when
the number of replications to be dealt with is small. Lahiri (1957) for instance provides a number of illustrations from
the Indian National Sample Survey. (8) The same is true of displaying the survey results separately by replication to
convey to the user a vivid impression of the variability in sample survey results (Illustration 7D). It is of course also
possible to have a larger number of replications for more stable sampling error estimation, and collapse them to a
smaller number for objectives (6), (7) and (8).

In view of the above conflicting considerations and opinions, it is not possible to make specific recommendations on
the appropriate choice of the number and size of replications. With say 100-1000 PSUs in the sample, a simple rule
which has been found ralher reasonable is to begin by making both the number of replications and the number of
sample PSUs per replication equal to the square-root of the given total number of PSUs in the sample. For example,
with somewhat over 200 sample PSUs, il would result in around 15 replications each with 15 PSUs. Similarly, with
600 or so PSUs, one would begin by considering around 25 replications, each with 25 PSUs (Illustration 3A).

ILLUSTRATION 3A SOME EXAMPLES OF REPLICATED SAMPLING

The following provide a number of examples of the actual or potential use of replicated sampling in practical survey
work, especially in developing countries.

Example 1. Samples with Several Hundred PSUs Selected Systematically

One of the basic factors favouring more wide-spread use of replicated sampling in developing countries is that, in
many situations, various practical considerations favour the use of sample designs with relatively small and compact
but numerous PSUs. The stratification is often largely obtained through systematic selection of PSUs from
geographically ordered lists, rather than through an elaborate system with many explicit strata. These features of the
design facilitate the division of the sample into a number of independent replications, each with a reasonably large
number of sample PSUs to reflect the structure of the fu l l sample. For instance many surveys are based on samples
of census enumeration areas (EAs). Typically these are quite compact areas with say 50-300 households on the
average, from which say 10-50 households may be selected into the sample per EA Hence national surveys typically
based on samples of several thousand households may include several hundred EAs as primary units. An example
is provided by the national fertility surveys conducted under the World Fertility Survey during 1972-84: the following
were among the surveys based on 300 or more PSUs each, even though the sample sizes were modest (mostly in the
range 4000-7000 households per survey; see Verma 1980; Scott and Harpham, 1987):
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Country

Ghana
Portugal
Pakistan
Panama
Senegal
Indonesia
Colombia

No.of PSUs Country No.of PSUs
in sample in sample

300
300
326
354
358
366
370

R.of Korea
Peru
Jamaica
Venezuela
Trinidad
Philippines
Sri Lanka

390
410
428
480
648
742
750

In most cases the sample areas were selected systematically after stratification and ordering of the lists by type of
place, administrative division and geographical location. Following the same ordering, the full sample can be easily
divided into replications systematically, each replication essentially retaining the original stratification. For instance
the 480 PSUs in Venezuela may be systematically partitioned into say 12 replications of 40 areas each, taking unit
numbers 1, 13, 25, etc, into the first replication, unit numbers 2, 14, 26, etc, into the second, and so on; or one may
construct 24 replications each with 20 areas; or some other combination of the number and size of replications. If
areas in the original sample were selected with PPS (probability proportional to size), the PPS character of the
selection will be retained in the replications as well. Estimates for any statistic, however complex, may be produced
for each replication separately, and variance of the estimator for the full sample computed simply by an expression
of the form (3.1)

Example 2. A Replicated Master Sample

An example covering many household surveys on diverse topics from one country is provided by the sampling scheme
developed in relation to the sampling frame created from ihe 1990 Population Census of Indonesia. (The following
description is based on unpublished documentation at the Indonesia Central Bureau of Statistics.) From the Census
frame of areas, a large master sample of around 4000 EAs (PSUs) is selected with PPS after urban-rural,
administrative and geographical stratification. Retaining the original ordering of selection, the combined master
sample list (formed by placing one stratum after another) is systematically divided into around 50 replications, each
with 80 or so EAs. Subsampling from the master sample for a survey on any particular topic would generally involve
selecting simply a subset of the replications at random, followed by listing and sampling of households within the
selected areas to yield a sample with the required number of areas and households. Depending on the topic, a
national sample may contain say 400-2000 EAs, ie 5-25 replications. In practice the system is more flexible than may
appear because systematic division of the ordered master sample lists can be easily repeated with any subsampling
interval. For instance by doubling the interval, twice as many replications can be created each with half as many EAs;
the same result may be obtained by systematically selecting one in iwo areas from each original replication. Such
modifications can be convenient for smaller surveys. In a similar fashion, fewer and larger replications may be
constructed for bigger surveys. The attractiveness of the scheme for the routine production of approximate estimates
of sampling errors from household surveys covering diverse topics is obvious. There is scope for improvement in the
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precision of variance estimates through averaging over related surveys. The main requirement in estimating variances
would be to tabulate the survey results separately by replication.

\
Example 3. Independent Enumeration of Subsamplcs

In the Indian National Sample Survey (NSS), the division of the total sample for any annual round into two or more
(most often two) subsamples within each explicit stratum has been a permanent feature of the design. Presentation
of the final estimates by subsamplc along with the full-sample estimates help in conveying to the user a rough but
vivid idea of the degree of uncertainty involved in the survey results. Often, unexpectedly large divergences between
the subsample estimates can help to locate exceptional field or data processing problems. (This indeed was a major
objective of the approach.) Furthermore, estimates of standard errors can be computed at stratum as well as the total!
level. On certain assumptions about distribution of the subsample estimates, non-parametric confidence intervals can ¡
be constructed for the population parameters. In some earlier rounds of the NSS, different field staff surveyed
different subsamples, and tabulation of the subsamples was done at different processing centres. In this manner,,
comparison of subsample results provided an indication not only of the sampling error, but also of some components
of variance arising from other, nonsampling, sources (India, 1990). Some of the results, showing the range of
estimates from different replications, have been reproduced in Illustration 7D.

Example 4. Replications in a Single Stage Stratified Sample

The use of replicated sampling can of course be most convenient and appropriate in single stage designs with a large
number of 'primary' units. Such is the case with many surveys of establishments where individual establishments form
the units of selection and analysis. Many surveys of households in developed countries involve direct sampling of
households from lists in a single stage. In developing countries as well, there are examples of household surveys using
single stage designs at least in selected domains such as major urban centres. Though the following example is based
on surveys of economic establishments rather than of households, it provides a good illustration of the use of
replicated sampling.

The system of economic surveys in Cyprus consists of a set of annual surveys each covering a major sector of the
economy (manufacturing, trade, transport, services, etc). These are supplemented by a monthly survey of employment
covering all the sectors. The surveys are based on a common design. The population of establishments is divided
into economic sectors, sectors into subscclors with varying degrees of detail, and within each subsector a single stage
sample of establishments is selected with PPS (probability proportional to the size of employment) systematically from
establishments ordered by size of employment. A wide range of estimates is required from the survey separately for
a number of domains (economic sectors or subsectors), covering many variables such as annual sales, gross output,
direct costs, value added, investment and employment - both as aggregates and as averages per establishment and per
worker. In addition, monthly levels and trends in employment by sector are produced using a complex composite
estimation procedure applied to the employment survey (Cyprus, 1990).

To compute variances, the sample of establishments within each domain was divided systematically into a number of
replications. (A domain usually referred lo a subsector at the 2 digit level of ISCO.) Replications could be formed
simply and flexibly because of the systematic nature of the sample within each domain. The main issue requiring
consideration was the choice of the appropriate number of replications in each domain. An adequate member of
replications per domain and an adequate number of units per domain are both important requirements. The domains
varied considerably in sample size (mostly in the range of 50-400 establishments), and the following simple rule was
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used to determine the number of replications in a uniform way: the number of replications and the number of units
per replication both varied in proportion to the square-root of sample size in the domain. Thus in a domain with
100 sample establishments, 10 replications each with 10 establishments were created; in a domain with 300 sample
establishments, around 17 replications each with 17 or so establishments were created. (Some results on coefficients
of variation computed by using the independent replication approach are shown in Illustration 6.E.(2); these were
obtained from past annual surveys for the purpose of sample redesign for future surveys.)

3.3 JACKKNIFE REPEATED REPLICATION (JRR)

3.3.1 INTRODUCTION

The Jackknife Repeated Replication (JRR) method is one of the 'resampling methods' for computing sampling errors
for complex designs and statistics in which the replications to be compared are generated through repeated resampling
of the same parent sample. Each replication is designed to reflect the full complexity of the parent sample. However
the replications in themselves are not independent but overlap, as their construction involves repeated resampling
from the same parent sample in a specified manner. This general approach is useful and necessary when the
independent replications are not available, or if their number is too small to yield useful estimates of sampling error
using the simple replicated approach of Section 3.2. With repeated resampling the variance estimates arc made more
stable through averaging over many subsamplcs. However, since the replications generated are not independent, the
simple expression (3.1) cannot be used to estimate the variance of a statistic based on the full sample, irrespective
of whether the statistic of interest is linear or more complex. Also, special procedures are required in constructing
the replications so as to control the bias in the variance estimates resulting from the lack of independence of the
replications. Various resampling procedures arc possible depending upon the manner in which the replications are
generated from the parent sample and the corresponding variance estimation formulae evoked.

The JRR method involves the following basic steps:

|1] the selection of a number of overlapping subsamples from the parent sample;

[2] derivation of the needed estimates of the population from the subsamples;

[3] and an estimation of the variance of the parent sample estimator from the variability among the
subsamplc estimates.

In the basic model of the JRR method, replications are generally formed by randomly eliminating one sample PSU
from a particular stratum at a time, and duplicating or rewcighting the retained PSUs in the stratum concerned to
appropriately compensate for the eliminated unit . Hence with a primary selections in the full sample, the same
number of unique replications are defined, each corresponding to a particular unit i in stratum h having been
eliminated, and the other units in the stratum given appropriately increased weights so that the estimate y(hl) from
the replication has the same expected value as the estimate y from the full sample. (However the two generally do
not have identical values in any particular sample.) This is because each unit is eliminated or retained (with
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appropriately increased weight) in the construction of the replications exactly the same number of times. For the same
reason, the average of the replicated estimates involving eliminations from the same stratum

and the average of all a replications

y = EuWfl; where a =

both actually (not merely in expectation) equal the total sample estimate in the linear case, and approximately so in
the non-linear case. (In the above ah is the number of sample PSUs in stratum h, and also the number of
corresponding replications generated.)

With units eliminated from one stratum at a time in the construction of the replications, each replication provides
a measure of only the variance contributed by the particular unit and stratum involved. These estimates are then
aggregated over the replications to obtain the total variance.

The basic model can be generalised in various ways. For example, replications may be constructed by eliminating
several PSUs at a time from a particular s tratum. It is also possible to think of suitable jackknifc procedures which
leave out parts of more than one stratum at a time. The BRR approach discussed in Section 3.4, in which replications
are formed by e l iminat ing one half of every stratum in the sample at a lime thus becomes a limiting case of the
generalised JRR approach. Tukey (1968) for example sees possible advantages in the intermediate approach in which
JRR replications are formed by eliminating anything less than half the sample at a lime (Section 3.3.4).

The following description, however, is largely in terms of the usual JRR applicaiion of dealing with one uni t in one
stratum at a lime.

3.3.2 DESCRIPTION OF THE PROCEDURE

The Method in the Linear Case

Consider a replication formed by dropping a particular PSU i in stratum h and appropriately increasing the wcighi
of the remaining (ah-l) PSUs in that stratum to compensate for the missing PSU. The estimate fora simple aggregate
(total) for this replication is
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The last term in (3.3) vanishes by definition if an average is taken over all i in the stratum. This means thai in the
linear case, and with each PSU dropped only once, the average of estimates y(hl) over the stratum

>« = E, W. (3-4)

and the average over all a = 2ab replications

= (3 5)

both equal to total y estimated for the full sample. It also follows from the above definitions that the standard
expression for variance of the total y estimated from the ful l sample

can he written in any of the following three forms (which arc equivalent in view of the identity of (3.4), (3.5), and
the full sample estimule y in the linear case):

(3-8)

(3.9)

Extension to the Non-linear Case

In the JRR method the standard variance form (3.6) is replaced by one of the three expressions (3.7)-(3.9); usually
the last of the three is used, as it is more conservative. In the linear case this replacement makes no difference; but
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then there is no point in introducing the lalter more complicated expressions. The point of introducing them is thaf
they provide good approximations for the variance of more complex, non-linear statistics as well. This is because,

being based on nearly the full sample, estimates like y(hl), y(h), and even more so their overall average y are expected

to be close to the full-sample estimate y for a complex statistic. Hence their variance, expressed by any of the last
three forms, provides a measure of variance of y as well. This is not true of the standard simpler form (3.6). In the
non-linear case, expressions (3.7)-(3.9) are rewritten by replacing y (which we use to denote the full-sample estimate
in the linear case) everywhere by y (which denotes the same in the non-linear case).

Paired Selections

The case of exactly two sample PSUs per stratum (ah=2) is a common and convenient one. In application, this
amounts to eliminating one PSU and duplicating the other in a stratum at a lime. To write the formulae for this
special case simply, a slightly different notation is more convenient: y'(h) is used to denote the estimate formed by
dropping a particular PSU from stratum h, and y"(h) to denote its complement formed by dropping the other PSU
in the. stratum. With this notation we can write the above as

or, by replacing the average of the two replications by their near-equivalent total sample estimate y , as

«"((y) = £,[(i-A).(y«-y)2] (3-11)

or its complement

With paired selection and using either of the above equivalent forms, it is possible to reduce (to half) the number
of replications needed by only considering one primary selection at random from each stratum and disregarding its
complement. This can result in considerable saving in computational work, and may not result in much loss in
precision in large samples with many strata.

Other forms are also possible, such as from (3.9):

which turns out to be simply the average of (3.11) and (3.12) and hence requires twice as many replicated estimates
as either of the two.
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3.3.3 DEFINING THE SAMPLE STRUCTURE

The basic requirement for the JRR method is that the (full) sample be selected by dividing the survey population into
a number of strata, from each of which two or more primary selections are obtained independently at random. In
practical application of the method, various steps are often required to redefine or simplify the given sample structure
10 conform with the required model, and also for computational convenience and efficiency. This is the case especially
when the number of primary units and strata involved is large, and the PS's tend to be small or variable in size. The
steps, described more fully in Section 4.4, include: (i) random grouping of PS's within strata 10 form more suitable
computing units; (ii) combining of units across strata; (iii) collapsing (disregarding) some stratification to ensure that
at least two effective primary units arc available from each computing stratum; (iv) treating adjacent units in a
systematic sample as independent selections within the strata so defined; and (v) assuming that the primary selections
within each stratum are independent.

As mentioned above, the basic idea of the JRR is to drop a random set of PS's from a stratum al a time. This means
that in the computational formulae described, it is such 'drop-out groups' rather than individual PS's which are
relevant. Of course, often such 'groups' consist of single PS's; nevertheless the conceptual distinction remains, and
it is more convenient to think of the former as the effective computing units. We can therefore add to the above list
of sample redefinition the following: (vi) random grouping of uni ts further if necessary, to define 'drop out' groups
which serve as the effective computing units, so that a replication is formed by dropping one such uni t from a
particular stratum; and (vii) other possible variations in the method to reduce the number of replications involved.
These include for instance: considering only a subset of replicates for dropping, always retaining the others; dropping
replicates from several strata at the same time; or permitting some units to be dropped out in more than one
replication. However the most common (and arguably the most efficient) scheme is when sample PSUs are dropped
one at a lime and each unit is dropped exactly once.

3.3.4 WIDER USES OF THE JACKKNIFE APPROACH

In conclusion it is worth quoting the following remarks by Tukey (1968):

"One important point about the use of the jackknife - in which, rather than leaving out half of the available
data, one leaves out smaller pieces in turn unti l all has been left out once - is its ability to be used at two or
more levels. If one had used the jackknife method rather than the half-sample method [the reference is to the
BRR method discussed in the next section] to obtain the DEFFor DEFT values [design effect; sec Chapter 5],
as in Kish and Frankel situation [see references at the end of this document], one could go ahead to estimate
the stability of these results, or of their differences, or their ratios. By doing this we would have a better
understanding of what these results, as well as many others, really mean.

"The technique is simple in principle, but often not easily grasped without detailed exposition. The basic idea
in dealing with a DEFT, for example, would be lo lay aside one piece of the data and then calculate the DEFT
by jackknifing ihe remainder. This jackknifing would involve leaving out additional pieces of ihc data, one at
a time, and in turn. Once this has been done for one firsi-siage piece, we proceed lo do all ihis over again
and again, laying aside each piece of ihe data ai ihe first stage, we are ready lo jackknife ihe DEFTs thus
oblained and ihus esiimate iheir variabilily...Ii seems 10 me that there will, in the two-psu-per-slratum situation
faced by Kish and Frankel, prove to be real advantages to a suitable jackknife procedure - one that leaves out
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more than one PSU, bul less than half of all PSUs. If we have five strata, each with two PSUs, the half-sample
method requires leaving out one PSU in each stratum, which can be done in 32 ways. A probably sensible
jackknifc approach would involve leaving out one PSU in each of, say, two of the five strata. There are 40
possible ways to do this. The gain will come from leaving out enough, but noticeably less than half of the
data...

"A simple example on which to compare "jackknifing" and "halving" is the problem of data gathered in several
blocks with three values, equally spaced in time, obtained in each block. This sort of data arises naturally in
many agricultural problems (including lime of planting and time of harvesting). Yates (private communication)
suggested that, where the number of blocks was a power of two, we treat such situations by halving the data
and comparing the halves, repealing (his in an interesting and ingenious way according to a fraciional faclorial
paltern, ihus obiaining ihe full number of degrees of freedom for ihe variability esiimate.

"Analysis of this problem shows that the bias due to halving - both in the location of ihe opiimum data and
in ihe esiimate of the variance of this optimum data - is noticeably larger for halving than for 'leaving oui one"
jackknifing, which also provides ihe full number of degrees of freedom for a variance esiimate. I believe we
can expect to find this phenomenon rather general. Accordingly, I believe that 'leave out a few' techniques
will do even better lhan halving in the iwo-psu-pcr-straium situation."

3.4 BALANCED REPEATED REPLICATION (BRR)

In the Balanced Repealed Replication method, a replication is formed from ihe full sample by randomly selecting
some and dropping the remaining units from every stratum. (Typically, a replication is composed of a random half
of every stralum.) Conscquenlly any replication when compared with the full sample (or with the average of all
replications considered), provides a measure of ihe variance of Ihe entire sample. These measures arc then averaged
over the whole sel of replications lo obtain more stable esiimales.

The BRR meihod is lechnically more complex lhan ihe JRR; consequenily, ihe discussion in this section needs to
be more elaborate. Technical complexity can in fact be a serious drawback of the method when compared with JRR,
ihough the two methods have been found to perform equally well in dealing with complex stalisiics under complex
designs.

3.4.1 BASIC APPROACH OF THE BRR METHOD

The Linear Case

To illustrate the basic approach we begin by assuming the following model:

[1] The populalion is divided inio a number of strata (h = 1 10 H) and from each siraium exacily iwo
independent primary selections are oblained.

[2] The objeclive is to estimate variance of a linear siaiislic such as a populalion lotal.
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Assumption [1] refers to the structure of the total sample, which is then divided into a number of overlapping
replications as described below. This assumption is not an unrealistic one for the BRR method, because the procedure
is most readily applied to designs with 2 PSUs per stratum. Though it can be extended to 3 or more (but a constant
number of) primary selections per stratum, it remains a fact that the method is not so flexible in dealing with diverse
designs. However this limitation is not as restrictive as it may appear, (i) Firstly, many surveys do use 2 PSUs per
stratum designs; or more commonly, such a design is approximated by applying the collapsed stratum technique to
systematic samples or to designs with fewer than 2 PSUs per stratum, (ii) Secondly, through random grouping of
units or combining across strata, the actual design can be redefined to fit the 2 PSUs per stratum design with good
approximation (see Section 4.4 for further discussion of these issues), (iii) Thirdly, of course there is no restriction
on the manner in which the sample is selected within primary units.

Assumption [2] is not realistic because the point of using a method like the BRR is to deal wilh complex, non-linear
statistics. However, as in the case of the JRR method, the linear case provides a starting point for description of the
method. Moreover, approximations for the non-linear case are obtained by analogies to the results for the linear case.

Suppose that a sample with two primary selections from each of H strata is divided into two parts as follows. One
of the 2 PS's from each stratum is assigned at random to "Subsamplc 1", and the other PS to its complement
"Subsample 2". Let yh' be the appropriately weighted estimate of the stratum total from the unit from stratum h in
Subsample 1, and yh" be the estimate from the unit in Subsample 2. Their average yh = (yb'+yh")/2 also estimates
the stratum total. On the lines of (2.8), the ordinary estimator of variance of the full sample estimate

is given by

= E*

(Note that in the present notation, a quant i ty like yh' is scaled to be twice the size of a 'half-sample estimate' like yhl

used in Illustration 2A.)

Alternatively we can consider the simple replicated estimator of variance following (2.2). The two samples form
independent replications, their respective estimates of the population total being

y = / // v^ //*'> y = E»>*

and their average
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— 1 , i y/v 1 T-̂  / / //\.y = _(y' + /) = _.J^ (y, + y, )

is identical lo y in (3.14) for the linear case being considered. Following (2.2), the simple replicated variance of y is

, = (y'-y)* = (y"-y)2 = j.(y'-y")2 (3.16)
4

Estimator (3.15) is based on H degrees of freedom, but (3.16) only on one degree of freedom (hence the subscript
T). The latter therefore is much less precise than the former; however it is no more biased as can be seen by
rewriting (3.16) as follows:

The second term on the right vanishes in expectation, because the units are allocated to one or the other subsamplè
independently across strata. This leaves the first term which is identical to (3.15).

The reason for considering a replicated estimator of the form of (3.16) is that, unlike the ordinary estimator (3.15),

it can be readily extended to non-linear statistics y as will be explained below. Its major drawback is the lack of

precision. To improve stability, the operation of creating 'half-sample replications' can be repeated many (T) times
and average taken, giving the averaged estimator

and its variance

where subscript l refers to a particular half sample replication and its complement. It can be shown that if the
average is taken over all possible half samples, (3.17) is as precise as (3.15). However, the number of possible half
samples is too large (= 2" ' distinct half samples and as many complements) for the above to be useful in practice.
Instead, a much smaller "balanced" set of replications is sought which can achieve the precision of (3.15). To explain
the idea of balancing (McCarthy, 1966), it is illuminating to express the totals (y,', y,") estimated from a particular
replication (and its complement) in terms of the quantities (y,,', yh") corresponding to arbitrarily defined but fixed
Subsamples 1 and 2 referred to earlier. It can be easily verified that the relationship is

where duh is an index defined such that:
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duh = +1 if the unit appearing in replication t in stratum h is from Subsample 1, and
d^h = -1 if the unit is from Subsample 2.

The above gives (noting that d,h
2 = 1 in all cases)

A.Jt

Substituting into (3.17) and reversing the order of summations over t and h gives

The second term on the right represents additional variability in comparison with the ordinary estimator (3.15). For
all possible replications, this term vanishes for linear estimates (though only approximately for non-linear estimates,
for which the method is needed and used). The idea of balancing is to choose a much smaller set which has the
property that for every fixed pair of strata (h,k) the quantity

this making the additional variability disappear.

Another desirable property of the set is thai the average yT (eq. 3.17) is the same as the total y estimated from the
full sample. This is ensured if in each stratum, the two units appear in the same number of replications, which
requires that for every stratum h :

£/,, = 0 (3-19)

Extension to Non-linear Statistics

On the assumption that the distribution of the average yT of the replications is close to the distribution of the

non-linear estimator y based on the lull sample, equation (3.17) provides a good estimate of var(y) as well. This

applies irrespective of the complexity of the estimator. Hence the method is directly extended from simple linear
statistics to non-linear statistics of any complexity, provided that the assumptions noted above remain valid. Several
empirical investigations confirm this validily. H is also assumed that the method of constructing balanced replications
(as described in Illustration 3B below) can be carried over from the linear case, for which it is established, to the
non-linear case. Since in the non-linear case the replicated estimates y, or their average yT are not identical
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to y based on the full sample, the different forms shown in (3.16) are also not identical to each other. This gives

the following four alternative estimators for the variance of y :

- ^"1

— V* f ' /Ai2~7^-¿-i, v» y, )

Of the above four forms,the last one (v3) is the same as (3.17). Note that while v,' and v," are each based on T
replications, v, and v, involve T complementing pairs (ie 2T replications), and hence considerably more computational
work. The forms v,' and v," are simply complements of each other, and the choice among them is arbitrary. Form v,,
being an average of the two, can be somewhat more precise but involves twice as many replicated estimates; it may
be preferred if the computational work is no problem. Being a more conservative estimator, v, may also be preferred
over v,. In situations where the BRR method is appropriate, the difference between the last two should be small in
any case.

3.4.2 APPLICATION IN PRACTICE

The BRR method is most conveniently applied to designs with two primary selections per stratum; extension to more
than 2 (but a constant number) of PS's per stratum is possible though at the cost of further increase in complexity
of the procedure for constructing the 'balanced set' as described in Illustration 3B below. This makes the method
somewhat restrictive. In any event, appropriate redefinition of the sample structure may be necessary following the
various approaches described in Chapter 4.

As explained in Illustration 3B, the number of replications required is between (H+l) and (H+4), where H is the
number of strata, corresponding to a = 2H primary selections with the paired selection model. Consequently, the
number of replications required is roughly half thai required in the basic model for the JRR method (which requires
as many replications as the number of primary selections). Also, the si/e of each replication in BRR is roughly half
as large as that in JRR. For both these reasons, the computational work involved in the former is generally less than
the latter, though in either of the iwo cases i t usually exceeds that involved in the linearisation method.

In any case, in samples with many PSUs and strata, the computational costs of the BRR may become excessive. One
way to reduce the cost is to appropriately combine units and strata to obtain fewer computing units and strata as
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discussed in Chapter 4. Anolher procedure is to reduce the number of replications required for a given number of
strata by seeking only a partially balanced design. McCarthy (1966) describes a method of partial balancing in which
the full set of strata is divided into a number of equal groups. A balanced set of part-replications is created for only
one group, and each replication is completed for the whole sample by simply repeating the pattern of that group in
all the other groups of strata. McCarthy also notes that some other authors found the same efficiency by selecting
a random set from the full set of orthogonally balanced replications.

TABLE 3B.(1). Balanced set of 8 replications.
(Source: Kish and Frankel, 1970)

ORTHOGONAL BALANCE OF 8 REPETITIONS FOR 7 STRATA'

4
5
G
7
8

+
T

+

+

• The 6rst repetition ia nmrk«,l + + + - + - - i n accord with the scheme in |28, p. 3^3| for creating ortliog-
onal repetitions. It is an arbitrary representation of a random first choice from the pair of replicjitea in each stra-
lum. _ _ _ + - + + would represent the associated complement replication. The repetitions from 2 to (t - I) are
designated from the first row by moving to the right ooo place circularly in Columns I to (k -1). The *th repetition
iaal l -. Note that the number of + and - replicates used are 4 for etich stratum; also that the number of changes
is 4 [rom uny repetition tr> any other. r , _ .

The situation is similar when * is any micRrnl multiple o f - 1 and the number of strata is H =i- l . If H -k-í
or ¡I =k -3. orthogonal balance may bu obtained by omitting any 1 or 2 columns. If H =4. orthogonal balance may
be obtained'by wriliuK a whole column of - for the last stratum, using the same replicate from it for every repeti-
tion, but this aacriGres the symmetrical use uf all replicóte».
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3.4 Balanced Repealed Replication

ILLUSTRATION 3B CONSTRUCTING A BALANCED SET OF REPLICATIONS

Plackell and Burman (1946) provide a method of constructing 'orthogonal' [T x TJ matrices with entries
+ 1 or -1 and T any multiple of 4, which satisfy equations (3.18) and (3.19) when summed over rows t. Such a matrix
can be used to define a balanced set of half-samples as follows. To start with, in each stratum one unit is assigned
at random to Subsample 1, and the other uni t to Subsample 2. Let us ident i fy each un i t in the first set with a ' + ',
and in the second set with a '-'. The orthogonal matrix consists of a '+' or '-' in each cell according to a certain
pattern. The T rows of the matrix represent the set of T replications (half-samples), and any subset of H (out of T)
columns represents the strata. A row defines the composition of a replication; ie it specifies the particular unit
(a '+' or a '-') taken from each stratum to form the replication. The matrix has the property that equation (3.18) can
be satisfied if H<T, but (3.19) only if H<T. Hence T can be taken as the next multiple of 4 after H; that is, the
number of replications required for a sample with H strata is in the range T = (H + l) to (H+4).

Examples
Tables 3B.(1) to (3) provide examples of 'balanced' sets for T = 8, 16 and 24 replications respectively. The firsi
example is taken from Kish and Frankel (1970). The rows define 8 half-sample replications for a sample with 7 (or
fewer) strata; strata are identified by columns. It is assumed that each s tratum contains 2 primary selections, one
assigned a '+' and the other a '-' at random. Replication No. 1 for example is formed according to the first row, ie
by taking units designated as ' + ' in strata 1, 2, and 3 and 5; and taking units designated as '-' in the other strata.
Similarly Replication No. 8 takes the units designated as '-' in each slraium. It can be seen that in any column
(stratum) the number of + and - signs is equal, meaning that each of the 2 units appears in the same number of
replications. This satisfies (3.19). Also if any two columns are taken, the number of rows in which they have the same
sign (giving duh.dLk = 1) is equal to the number of rows in which the two columns have different signs (giving d t h .du k

= -1). This satisfies (3.18). Note that if there are fewer than 7 strata, the number of columns not required can be
dropped arbitrarily. Similar remarks apply to the other two tables, which deal with somewhat larger samples. The
footnote in Table 3B.(1) describes the symmetry of the pattern.

TABLE 3B.(2). Balanced set of 16 replications.
(Source: Plackett and Burman, 1946)

The complete design is generated by taking this as the first column (or row), shifting it
cyclically one place fourteen limes and adding a final row of minus signs, thus:
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TABLE 3B.(3). Balanced set of 24 replications.
(Source: McCarthy, 1966)

Stratum

Half- 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Sample 1 2 3 4 5 6 7 8 9 0 1 2 3 4

1 + - - - - + - + - - + + - -
2 + + - - - - + - + - - + + -

3 + + + - - - - + - + - - + +

4 + + + + - - - - + - + - - +

5 + + + + + - - - - + - + - -

6 - + + + + + - - - - + - + -

8 - + - + + + + + - - - - + -

9 + - + - + + + + + - - - - +

10 + + - + - + + + + + - - - -

11 - + + - + - + + + + + ---

12 - - + + - + - + + + + - + - -

1 5 - + + - - + + - + - + + + +

1 6 - - + + - - + + - + - + + +

17 + - - + + - - + + - + - + +

1 8 - + - - + + - - + + - + - +

19 + - + - - + + - - + + - + -

2 0 - + - + - - + + - - + + - +
21 -- + - + -- + + -- + + -
22 - - - + - + - - + + - - + +

2 3 - - - - + - + - - + + - - +

2 4 - - - - - - - - - - - - - -

1 1 1 1 1 2 2

5 6 7 8 9 0 1

+ + - + - + +

- + + - + - +

- - + + - + -

+ - - + + - +

+ + - - + + -

- - + + - - +

- + - - + + -

+ - + - - + +

- + - + - - +

- - + - + - -

+ - - - - + -

+ + - - - - +

+ + + - - - -

+ + + + - - -

+ + + + + - -

- + + + + + -
+ - + + + + 4

- + - + + + +

+ - + - + + +
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3.4 Balanced Repealed Replication

SpcciGcalion of Balanced Sets

Wolter (1985) provides a complete list of T X T orthogonal matrices for T as a multiple of 4 up to 100. The reader may
consult that reference, if available. However to make this Technical Study as self-contained as possible, below we specify
the set (except for T = 92 and 100 for brevity) in an alternative and much more concise form drawn from the original paper
of Plackett and Burman (1946). It may be pointed out that matrices meeting the requirements (3.18) and (3.19) are not
unique. For example the '+' and '-' signs can be interchanged; or rows and columns can be rearranged in any arbitrary way;
or for H<T, any arbitrary subset of columns not required can be dropped. In Table 3B.(4), the matrices are specified in
several forms:

[1 ] The most common presentation gives a single set of (T-l) values. (In the table, N has been used by the original
authors in place of T here.) The full matrix is constructed from the given pattern as follows. Assume that the
given pattern forms the top (T-l) entries of the first column of the matrix. Each next column up to (T-l) is
formed by shifting each entry in the preceding column one row down, in a circular fashion, the (T-l)th row
entry moving to the top. The final row and final column of minus signs are added.

[2] Some matrices are formed by doubling others. This follows from the properly thai if [T] is a matrix of the
required type, then thai is also ihe case for ihe following mairix of order 2T where [-T] means a mairix formed
from |T] wilh all signs reversed.

-T

[3] In a few cases (T = 28, 52 and 76; also 100 nol shown here) ihe cyclic permutation is applied to blocks of cells
raiher than to individual cells as in the case of [1].

[4] Regarding ihe iwo cases nol shown (T = 92 and 100) the patiern for ihe nexl higher T value can be used. One
may for instance use T = 96 in a case actually requiring only T = 92; and for 100 use 104 obtained by
doubling the pailern for 52 according lo [2J.
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3 Comparison Among Sample Replications

TABLE 3B.(4). Constructing balanced sets.

.V =H.
tf = 12.
y = i«.
H = 20.
A' =24.
:V = _S. Finit nine rows

+ + - * - + + -
- 4 - 4 r + I- -

- 4- 1- - 4 I | l t _ -
- - J- 4- 4 I- 4 i - 4- - •
K - - - 4 - - 4 - - - + '

_ _ _ + _

(- 1

4 - - t - - - 4 - 4 - - r +
- + + 4 - - T - + -
-•-- + + - T 4 - + '

+ + - - 4- +
^ -r ^ - - - - f l l - + - - - - 4 . - - - . + _ + + ( . _ t .

A1 = 32.
AT = 3<i.
A' =40.
A' = 44.

,V = 82.

fini
eleven
rowa

(Obtained liv Icial) - + - + - " - +
Double design Tor ¿V = 20.

H - 4 - - T - f -

-r + Í- +

t 4 -4 -
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H = 56. Double design for A' = 28.
N = 60. + + - + t ^ - - ^ - ^ - - i

+ + - + + - + -
A1 = W. Double design for A1 = 32.

Af=72.

^ - ^ ^ - + - •

- -r + + - - - + t - + -

l r - j + - | 4 - - I

-(• - + - + - - + - 4- - +
- -¡+ + ; - -- + | + - . - + •)- - h - - Í- - •(-

t . l _ .
.-;- +

The first three rows are given ; to obtain the complete design the square blocks are permuted
cyclically. The first column, apart from the corner element, has alternate signs.

JV=80. + 4- + - +

4-4- - I - - I -4 - f h - 4 - - - H 4 - + - + 1 - - -

+• - - 4- + 4 - - - - - 4 - - H H - - > -

H = 8ft. Double deugn for A' = 44.
if = 92. Tfaia doign h&g not yet been obtained.
JV = 96. Double de««n fur N = 48.



COMPUTING SAMPLING ERRORS IN PRACTICE

4.1 PREREQUISITE: MEASURABILITY

The most basic requirement for generating information on sampling errors is that ihe survey design and procedures
adopted yield a measurable sample. 'Measurable sample' and 'measurability' are not precise or formal concepts, but
are used to identify a set of practical criteria which can be useful in distinguishing from others those sample designs
and procedures "which allow ihe computation, from the sample itself, of valid estimates or approximations of its
sampling variability" (Kish 1965, Section 1.6; also see discussion in the Survey Statistician Nos. 13-15, 1985-86; and
Kish 1987, Section 7.1).

[1] Firstly, for measurability it is highly desirable that the sample be a probability sample, ie be based on
selection procedures which assign known and non-zero probabilities to all elements in the population.
Certainly this precludes judgement or purposive samples, non-probability selections for experimental design,
arbitrary selections of single sites for 'case studies', and most quota samples. However concerning the last,
useful indications of the level of uncertainly due to sampling variability can sometimes be produced from
quota samples of sufficiently large size with many control categories and only small quotas taken from any
one category. Examples are good opinion or market research surveys which routinely include useful
indicators of margins of uncertainly due to sampling. In normal survey praciice one also encounters samples
which are not probabiliiy samples in the strict sense, in thai only rclaiive rather than actual selection
probabilities arc known. In such samples it is possible to produce valid estimates of proportions, means and
ratios, eic, as well as estimates of iheir variances; but ihis may noi be the case concerning estimates of



4 Computing Sampling Errors in Praclice

population aggregates without the importation of external information. In this a sample may be measurable
with respect 10 certain statistics but not with respect to others. Hence what is required for measurability
is: (i) preferably, that the design is such that the actual probabilities, or at least the conditional probabilities
of inclusion in the sample given the in i t ia l sample size, arc positive and known; or (ii) as useful extension
in some cases, that any non-random procedures involved are controlled and the population to which they
are applied can be considered reasonably randomised. The second conditions cannot be usually ensured in
national household surveys, and it is necessary to rely primarily on (i) for measurability.

[2J The second requirement is that of having two or more internal replicaiions in the sample for each domain
or stratum for which separate estimates of variance are required. Estimates of sampling variance (and of
other components of variable error) can be produced from the sample results themselves only from
comparisons between estimates from parts of the sample assumed independent. Most simply this means that
two or more independent selections must be available from each stratum. Most practical designs do not
meet this requirement exactly, but in many situations it is approximated closely enough for valid estimates
of variance to be produced. Examples of designs which can be considered measurable in this sense arc many
systematic samples, samples with single selections per stratum, 'controlled selection' in which sampling
across strata is linked in some manner, and many situations in which the mul t ip le selections within strata
arc not fully independent. Several of these features are introduced into practical designs for efficiency and/or
convenience.

[3j In practice it is necessary to go further then the above requirement of a minimum of two replications. It
is necessary to produce valid estimates of the statistics and their standard errors. By 'valid' we mean that
the variance estimator generated is sufficiently accurate to be useful, ie is not subject to unacccptably large
variances and bias. This is also a practical criterion: the required accuracy depends on the use to be made
of the information on sampling errors. Clearly, this informat ion is secondary to the main substantive
findings of the survey, and for many purposes i t is sufficient to obtain only approximate values of the
sampling errors. Furthermore, sampling errors represent just one component of the total error and not in
all circumstances the most important one. Nevertheless, in large-scale national household surveys,
reasonably accurate estimates of sampling errors for many variables and subclasses arc essential for proper
interpretation of the results and for evaluation and improvement of sample design.

Al a minimum, 'validity' requires that in computing variances the actual sample design and estimation
procedures are taken into account. Furthermore, the sample should be large enough in sixc (in terms
of primary selections, replications, or other relevant computing units) to yield reasonably stable
estimates of variance. In the sample design it is also necessary to avoid extreme variations in uni t sizes
and selection probabilities.

[4] Fourthly, the procedures for estimating each stat is t ic of interest and its sampling error need to be
formulated in accordance with the sample design. In most cases this is noi a major problem because several
good general variance estimation procedures applicable to complex statistics in complex designs have been
developed as described in Chapters 2 and 3. Nevertheless there can be situations for which valid procedures
cannot be formulated on the basis of existing methodology. A requirement of good survey practice is to
avoid getting into such situations.
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[5] Finally, it is necessary to have the means to implement appropriate procedures of variance estimation in
practice. It is necessary to have suitable computer software and full documentation of the structure of the
sample for this purpose. It is highly recommended that sample weights, PSU and stratum identifiers, and
other essential information on the sample structure be included as an integral pan of the computerised
micro-level data files resulting from the survey. Failure to ensure such information can render
'unmcasurable' samples which are measurable in other respects. There are many examples where the survey
documentation does not meet this basic requirement, even in developed countries, as for instance
Kish el al (1976) found in their at tempts to compute sampling errors from archived survey data in the
United States. Kish noies that "even loday variance computations arc not feasible for most multistage
probability samples, because the needed identification of strata and primary selection number are lacking
from computer tapes" (Survey Statistician. No 13). The author also cites the positive example of the World
Fertility Survey in developing countries in contrast to much survey practice elsewhere: "All the WFS
samples from less developed countries have and will have measurability: their sampling errors can and are
being computed. But none of the parallel fert i l i ty surveys from the developed countries of Europe have yel
computed sampling errors, and perhaps cannot do so now." (Verma et al 1980, discussion).

4.2 SELECTING STATISTICS FOR VARIANCE COMPUTATION IN
MULTISUBJECT SURVEYS

4.2.1 GENERAL CONSIDERATIONS

Diversity of Statistics

National household surveys are typically large-scale and multipurpose, and involve the production of separate
estimates for a very large number of statistics; the analysis of the results in the form of detailed tabulations, for
instance, can involve thousands or even tens of thousands of cells. The great multiplicity of estimates arises from
several sources. (1) Most surveys involve the collection of information on a number of substantive variables. In
practice there are hardly ever any true uni-subjecl surveys. (2) For the same set of variables it is usually required to
compute many different types of statistics ranging from aggregates and proportions to indices, differences and other
functions of ratios, and more complex measures of distribution and relationship. (3) Separate estimates in more or
less full detail are often required for geographical and other subnational domains. (4) The greatest increase in the
number of statistics perhaps comes from the need to produce separate estimates for diverse subclasses of the
population. Meaningful analysis of the survey data usually requires the classification of the survey units in many
different ways and in great detail. (5) Also, most surveys involve comparison between subgroups. With many
subclasses, the number of subclass differences of ¡merest can become almost unlimited.

Criteria for Choice

In view of the above, it is necessary to be selective in ihe choice of statistics for which to compute sampling errors.
The scope of computations in any particular survey should be decided on the basis of its specific objectives and
requirements, taking into account practical constraints.
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Sometimes selective computations covering only the most important statistics of interest are all that is possible or
required. With related surveys or rounds similar in content and design, it is often unnecessary to compute the full
set of sampling errors afresh for every survey.

However, in large-scale national household surveys it is generally quite inappropriate to confine the computations
10 a few arbitrarily selected statistics, or 10 seek unnecessary short-cuts and crude approximations, or to rely solely
on imputing information from other situations, rather than supplementing any existing information on sampling errors
with fresh computations where possible. There are several reasons for recommending as extensive a set as possible
of sampling error compulations in each survey. (1) In programmes of household surveys, it is very useful to
accumulate information on sampling errors covering a wide range of statistics, designs and situations. Such
information can help in the design and analysis of future surveys. (2) Results of individual computations are subject
to great variability. Appropriate averaging over many computations can yield more stable and useful results. (3) It
is necessary to extrapolate or impute information to statistics for which computations have not been made. Such
extrapolation requires identification of the patterns of variation of sampling error results as discussed in detail in
Chapter 6. The identification of patterns requires many compulations covering diverse statistics. (4) The evaluation
and improvement of sample design also requires the identification of such patterns.

In the selection of stalisiics for sampling error computation, the objective should be to capture the widest possible
range of values encountered in the survey. The reference here is not so much lo the actual magnitudes of standard
error, but lo certain other parameters or components which may be derived from them and to the general pattern
of the results. For instance, one should try to cover stalislics with diverse design effects, and a wide range of
coefficients of variation and other measures which are useful in identifying the general pattern of variation of the
results. This point will become clearer after discussion of 'portable measures' in Chapter 6.

Derived Statistics

One of the important objectives of sampling error compulalions is lo ident i fy the underlying patterns and
relationships in the results for diverse statistics. This is greatly helped by computing, in addition to actual standard
errors, a range of more 'portable' derived measures such as relative errors, design effects, 'rohs', coefficients of
variation and similar measures as explained more fully in Pan II. Also useful for the same purpose is information
on variation in cluster sizes and the manner of distribution of subclasses of different lypes over sample areas.

One objective of the derived statistics of the type referred to above is to separate out the effect of various features
of the sample design on the magnitude of the sampling error. While analysis of the error into components by
sampling stage may not feasible, il is ofien possible lo idenlify the effects of weighting, cluster sizes, and perhaps also
of some important aspects of the csiimation procedure.

4.2.2 VARIABLES AND STATISTICS

Subslantive Variables

The first priority should be given to covering the widest possible range of substantive variables included in the survey.
This is because usually the pattern of sampling errors differs most markedly across substantive variables, compared
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for example with the variation across subclasses for a given variable. Extrapolations and imputations can often be
made more easily across different subclasses or sample bases for a given variable than across different variables. At
a minimum, sampling errors should be computed for all important means and proportions with the total sample as
the base. The requirement to cover most variables in the survey is usually not difficult to meet because, even in
complex mulli-subjcct surveys, the number of important substantive variables is usually not large: a typical survey may
involve no more than, say, 30-60 such estimates. The great range of statistics encountered arises primarily from the
need to produce separate estimates for numerous subclasses and comparisons.

Often it is possible and useful to group survey variables on the expectation of similarities in the pattern of sampling
error results. The grouping may be based on substantive considerations as well as any available information on
sampling errors. The objective is to make the groups homogeneous. In selecting the set for sampling error
compulations, il is imporiant to cover as many different groups as possible, rather than many variables from only a
few groups.

Types of Statistics

It is also useful to cover various types of siaiisiics (such as estimates of aggregates, proportions, means and other
ratios) because the paiiern of sampling error rcsulls may differ greatly among ihem. Of course, for certain types of
statistics the pattern may be simpler and more easily related to other statistics; for them more selective compulations
may suffice. Il is desirable to cover more thoroughly siaiistics with more complex patterns of sampling errors. For
instance, il is usually more useful to cover many means and ratios, while proportions, especially those defined in terms
of similar characteristics, can be covered more selectively.

4.2.3 DOMAINS AND SUBCLASSES

Geographical Domains

In many surveys, statistics similar to the national level are also produced for a number of urban-rural , regional or
other geographical domains. This has a multiplicative effect on the number of statistics for which sampling errors are
required. Hence an important question is whether it is necessary and useful lo compute ihe full set of sampling errors
for each domain. The answer to this depends on the number of domains involved and on how different they are in
terms of the nature of the population covered, survey conditions, sample design, size and nature of the sampling units,
and other factors which affect the magnitude and pattern of sampling errors. Such differences arc usually marked
between urban and rural areas, thus necessitating separate computations. By contrast, conditions are often more
similar across different regions of the country, and regions can also be more numerous, especially in large countries.
In such circumstances, one may confine the compulaiions at ihe regional level lo only a subset of the mosl important
stalislics and explore the extent 10 which errors computed at the national level may be extrapolated lo the regional
level. A common difficulty in computing variances at the domain level is lhai individual domain samples are based
on small numbers of primary selections, resulting in unslable variance estímales. This also favours pooling and
averaging of individual computations and iheir extrapolation lo other situations in an appropriate manner.
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Subclasses

Much more numerous are subclasses defined in terms of characteristics of individual units, hence necessitating a high
degree of selectivity in computing sampling errors. In selecting subclasses, priority natural ly has to be given to those
which are the most important in substantive tabulation and analysis of the survey results. For instance, in
demographic surveys most analyses involve classification of the samples by age, sex and other demographic
characteristics of individuals: sampling errors for subclasses defined in terms of these characteristics are therefore
important. Similarly, in income and expenditure surveys, classifications by household size and composition may be
the most important.

The pattern of results over subclasses depends on the substantive characteristic defining the subclass, how the subclass
is distributed over the population and sample clusters, and the size of the subclass. It is desirable to cover subclasses
of different types and sizes. It is more useful to cover subclasses defined in terms of different characteristics than to
cover many categories of the same characteristic. Similarly, subclasses may be grouped according to the manner in
which they are distributed over sample clusters, and it is desirable to cover some subclasses from each group. In this
context it is useful to note a classification proposed by Kish el a! (1976).

[1] The basic concept is that of a cross-class, the members (elements) of which are more or less
uniformly distributed across the sample areas and strata. Examples are many subclasses defined in
terms of individual characteristics of households or persons such as sex and age groups, which tend
to be well distributed across the whole population and hence across sample clusters.

[2] At the opposite end, we have geographical or segregated classes which are largely confined to only a
subset of the sample areas. These are similar to but not the same as what we have termed ueographical
domains in that the latter are explicitly defined as area domains.

|3] As an intermediate category, we have mixed classes which are neither highly segregated nor well
distributed like cross-classes. Examples are certain classes defined in terms of socioeconomic
characteristics, such as persons with higher education or in certain occupations which are highly
unevenly distributed between urban and rural areas.

While technical details are discussed in Chapter 6, some important features of subclass sampling errors should me
noted here. Empirical results show that the pattern of variation of sampling error with subclass size is closely related
to how the subclass elements arc distributed over the population. Sampling errors increase with decreasing subclass
size: in a simple random sample in inverse proportion to the square-root of the subclass size, bu l not quite
proportionately in complex samples. This is because generally, design effects (defts) decline as we move from the total
sample to estimates over subclasses. In well distributed cross-classes ihe decline in deft with decreasing subclass size
lends to be more marked than in less well distributed classes; consequently in the former the increase in sampling
error with decreasing sample size lends to be less steep. In any case, the pattern of variation of the subclass sampling
errors depends on the nature of their distr ibution in the population.

Another factor, though generally less important than the above, is the correlation between the characteristic defining
a subclass and the substantive variable being estimated. Subclasses defined in terms of characteristics which are closely
related to the substantive variable being estimated often tend to be more homogeneous than the population at large.
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This lends 10 reduce ihe sampling error for ihe subclass categories concerned, or moderate the increase as we move
from the total sample to subclasses.

In situations where the total sample design effects themselves are close 10 1.0 (ie where there is little impact of
clustering of the sample), the need to compute sampling errors over many subclasses is reduced. It is more important
to study the patterns of variation across subclasses of differeni types and sizes for heavily clustered designs with large
design effects, and especially for variables with the largest défis. In any case, the appropriate strategy is lo begin by
computing sampling errors (including design effects) for diverse staiistics with the total sample as the base, and if
necessary separately for differeni geographical domains, and then decide as 10 whai exlenl and for what types of
subclasses additional computations will be mosi useful.

Subclass Differences

Almost all surveys involve many comparisons across subgroups and/or over lime. Hence it is important to have
information on estimates of differences between subclasses and between samples over time. Fortunately in many
circumstances it is possible 10 be quite selective in computing sampling errors for differences and comparisons, in so
far as the pattern of results can be deduced from the results for individual subclasses. For instance in comparisons
between subclasses based on independent samples, ihe variance of the difference is simply the sum of variances of
the classes being compared. This generally applies to comparisons between geographical domains and often also to
(hose between segregated classes.

For mixed or cross-classes, where ihe groups being compared come from ihe same primary selcciions, the variance,
of the difference needs lo lake into account the covariance term. However, even here the effects of clustering and
stratification often rapidly decline wilh decreasing subclass size, making ihe pattern of sampling errors for differences
simpler and more predictable, ihus reducing the need for many separate computations. In summary, ii is more
important to compute sampling errors of differences for subclasses which are overlapping and large in size, and for
variables with large subclass design effects.

ILLUSTRATION 4A COMPREHENSIVE SETS OF SAMPLING ERROR COMPUTATIONS

The national fertilily surveys conducled under ihe World Fertility Survey (WFS) programme in 42 developing
countries provide an example of one of the most systematic efforts in computing and presenting sampling errors for
a wide range of statistics from a complex survey. The example below illustrates the points discussed above concerning
the selection of slaiisiics for variance compulation. The core of the surveys involved interviewing women in the
child-bearing ages on iheir demographic and background characterises, marriage and birth histories, knowledge and
use of contraceptive methods, and preferences concerning child bearing.

Table 4A.(1) shows some results on sampling errors from the WFS. Countries included here are only a small subset
of ihe WFS surveys, for almost all of which comprehensive information on sampling errors is available in the national
survey reports. The results shown here arc laken from a comparative study (Verma, Scotl and O'Muircheartaigh,
1980); the actual sets of variables and subclasses covered in the national surveys differed somewhat from country lo
country.
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The first column in the table shows a set of variables selected for sampling error computation. This set covers most
of the substantive topics of interest in the surveys. Note that even in a complex survey, this number of variables is
quite manageable. The variables have been grouped according to topic. There is also a certain degree of homogeneity
within the groups in terms of the pattern of sampling errors (as indicated from example by the design effects shown).
Most variables of interest were in the form of proportions or means, the estimation of population totals or aggregates
not being an objective of the surveys. The set shown includes most of the important means; the coverage of
proporlions is more selective because of similarities in the pattern among different proportions of the same type.

Before considering the computation of sampling errors over diverse subclasses, it is necessary to examine the results
for the set of variables computed over the total sample. Rather than the actual values of standard errors, it is more
useful lo study a derived statistic such as the design effect (deft) which is more directly comparable across diverge
domains and subclasses of the sample for a given variable or set of variables. As detailed in Chapters 5 and 6, defl
values are often similar across domains of similar design; across well distributed subclasses, defts tend to decline with
subclass size. It is more important to compute sampling errors for different domains and diverse subclasses for designs
with large défis, especially for variables with particularly high values. Compulations for subclasses arc less necessary,
and hence can be undenaken more selectively, in cases where the total sample dcfts themselves are small (close
to 1.0).

The total sample défis are relatively large in Table 4A.(1) for countries like Nepal, Mexico, Thailand, Indonesia and
Colombia, where the defl values range from 1.5 lo 2.3; by contrast, the overall defl %'alucs are smaller in ihe fcrtilily
surveys of countries like Bangladesh and Fiji. (Counlrics have been arranged in the table in order of decreasing defl
averaged over all variables over the tolal sample.) In ihe WFS surveys in Sri Lanka, Guyana, Jamaica and Cosía Rica
(not shown here, bul available in the original source to the table), défis computed with ihe lotal sample as the base
averaged under 1.2.

The subclassCxS of interest are determined according to the tabulat ion and analysis requirements of the surveys. In ihe
present case, subclasses representing demographic groups (age, marriage duration, family size groups, etc) arc the
most important because they are closely related to the variables being studied in the surveys. Next come the classes
defined in terms of socioeconomic characteristics, which arc important in ihe sludy of diffcrcniials. Table 4A.(2)
specified a typical set. Regarding geographical domains, ihe requirements are much more country-specific, despite
the common content of the surveys being considered here. However, the requirement for separate urban and rural
computation is common.

Another example of comprehensive work in the area of sampling errors is provided by the equally wide-ranging series
of surveys conducted more recently in developing countries under the Demographic and Health Survey (DHS)
programme. The content of the surveys parallels ihe WFS, except for a much wider coverage of variables related lo
moiher and child health but somewhat less elaborate coverage of socio-economic characteristics of the survey
respondenls. On the following page Table 4A.(3) provides a typical example of variables selected for sampling error
computaiion, and Table 4A.(4) shows the total sample defts, taken from a comparative sludy of ihe DHS surveys
(Aliaga and Verma, 1991). The selection of results shown here complements that from the WFS by covering a number
of mother and child health (MCH) variables, and also by providing data from seven African countries. Together, the
two series provide perhaps the most impressive set of comparative data on sampling errors from surveys in developing
countries, albeit in a particular subject matter area. Frequent reference will be made to these results in the following
chapters to illuslrale various praciical issues in the compulation and analysis of survey sampling errors.
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TABLE 4A.(1). List of variables and defts based on the total sample from the world fertility survey.
(Source: Verma, Scoll and O'Muircheartaigh, 1980)

M ' P M / M in
01 ",, currently married
02. "„ exposed to child-bearing
03. "„ wi th marriage dissolved
04 "„ remarried
05 number of marriages
06. age al marriage
07. lime spent wi th in marriage

H R I I I . I T Y
08. "„ pregnant
09 children ever-born
10. living children
11. births in first 5 years
12. births dur ing past 5 years
13 first rtinh interval

1 14 last closed bir th interval
15 open bi r th interval
16 months breast fed child
17. 16, excluding dead children
18 "„ of children who died

1 1 K H I l i t f K I 1 1 HI N( | <

19. "., hist prcgnancie-s unwanted
20 "., wanting no more children
21. "„ expressing hoy-preference
22 ",, exceeded desired family si¿c
23 additional children wanted
24. desired family si/c

( UNI H » ( 1 H 1 I V I k S O W M I M i l
25. "..knowing pill
26 "..knowing 1UD
27 "„ knowing condom
28 "„ knowing modern meirnxl

ms' iKMï nrm CM
29. "„ ever used p i l l
30 ",. ever used t U D
31 "„ ever used condom
32. ";, ever used ,<ny method
33. "'„ ever used modern meihod
34 ",, used in open in te rva l
35 "„ used in closed i n t e r n a l
36 "„ current ly using any method
37 ",, cur ren t ly using modern method
38. 37, for women w a n t i n g no

more children

S^IPI I- si/I- i cver -n ia i i i ed women)

No of effective PSl.1-

Desig

Nepal

1-14
2 1 1

249

139
2 'OX
196
302
2 7 4
138
1-41
2-05
2 OX
1 26
1 70

-
239
2 1 3
237
316
376

325
295
2'44
4 19

2 2 3

5940

40

n faetón

Mexico

6K
13
41
12
36
76
25

106
78

1 7X
•44
58
22

-32
•61

205
1-45
2-08

•30
06
49
96
74

320

2^0
2 7 4

1 90

2 19
208
1 76

I 96
83
50

6255

1X2

(deft) for

Thailand

106
1 59
09X
1 4V
130
128

1 02
1-52
129
09X

1 16
1-43
1 37
1 W
I - 7 S
1 30

29
15

•15
62
63

274

1 94
2-77

205

228
234
1 78

2 OX
235
2 19

3820

70

the total

Indonesia

•35
36
44
51
79
54
14

31
34
43
3X
54

144
143
1-56
146
I - 2 X
134

1 44
1 71
1-34
1-31
1 62
1 K(>

232
2 5 K
2 (A)
2-24

1 95
1 91)
1 56
179
1 82
1 70
1 30
1 67
1 7 2
1 52

9136

376

sample

Colombia

126
107
1-47
1-24
1 69
135
H)9

086
1 15
1 I I
088
1 31
1 25
104
1 14
1 52

163

1 2K
1 12
K)6
1-46
MI9
1 IK

2 8 4
2-30
238
240

1 H2
1 21
1 13
235
1 93
205
1 69
1 98
1 49
1 34

3302

Peru

02
25
09
12
10
05
•04

1 26
107

12
0'87
1 04
1 14
102
0-92
1 50
HW
1-81

•34
18

097
•21
42
32

1 74

1 74
2 10

1 ""(I

1 84
1 33
1 46
1 47
1 44)
1 06
1 06

5640

410

Bangla-
desh

105
1 06
1 13
1 39
1 41
I 4 R
104

1 10
105
100
1 24
1 -03
1-20
1 17
1 20
1 12
1 16
1 08

1 10
1 28
1-23
1 17
1 23
1 26

1 70
1 71
1 42
1 80

"l 30
1 05
1 52
1 56
1 54
1 38
099
1 36
1 22
1 20

6513

240

FI/I

07
36
21
2.1
47
65

0-97

1 30
09X
0-94
1-05
1 ( X )

O H 9

1 1 1

Nil
1 (>2
094
1 29
1 52
1 22

_
1 66

1 32

1 4 2
1'44

1 26
1 JO
1 29
102

4928

11)0
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4 Computing Sampling Errors in Practice

TABLE 4A(2). Example of the subclasses used in 4A(1).

Definition of Subclasses Used
The Icrm subclass is used lo refer to a subset of the sample defined in terms of a particular

attribute of the individuals in the sample. Sampling error of each variable was computed for the
following sets of subclasses in most countries. Note Ihal only the demographic subclasses arc
strictly comparable between countries. To compule subclass differences the subclasses were
taken in pairs in the order in which they have been listed below.

Dcmoyraptiic subclasses
Age : Women aged under 25 (M, = 0-25);t women aged 25-34 (A/, = 0-35): women aged 35 44

(Mi = 0-27); women aged 45 49 (A/, = 0-13).
Marriage duration : First married less than 5 years ago (M, = 0-20); 5-9 years ago (Ai, = 020):

10-19 years ago (A/, = 0'32); 20 or more years ago (A/, = 0-28).
Children ever born : 3 or fewer children (A/, = 0-50); 4 or more children (A/ , = 0-50).

Sncio-et'onamic subclasses
Age at first marriage : under 25; 25 and over (under 20, and 20+ in Bangladesh and Nepal).
Woman's literacy ( I ) : not l i lernle; l i terate.
Women's literacy (2) : as abo.vc, bul confined lo women current ly aged 25-34.
Husband's level of education : no schooling; attended primary but nol completed: completed

primary; secondary or higher.
Husband's occupation: technical, adminis t ra t ive or clerical: sales and services; ski l led or

unskilled manual; farming.
Religion, ethnic group, etc. : as relevant.

ed c/i/.s'.vt'.v (yeoyraphii' domains)
Type of place of residence : urban; rura l .
Region : usually 3-6 major regions of the country, as relevant.

t \l, - .ippruxinuie si?e of ihe subcljss js a proportion of ihe ioi.il s.nnplc of women
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TABLE 4A.(3). List of variables for sampling cnor computations for DHS (Source: Aliaga and Verma, 1991)

group

fertility

health

fertility

and related
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

preferences
3
3
3

contraceptive knowledge

proximate

background

it
4
4
4
4
4
4
4
4
4

factors
5
5
5
5
5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29

and
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44

code

BBEFXX
CDEAD
CEB
CEB40
CHAR
CSUR
EXPOS
PREG
SINGLE

ATTE '
BCG
COUGH
DIAR
DIATR
DPT
FEVER
FULUM
HCARD
HTAGE
HEASLE
POLIO
TETA
TREATC
TREATF
UTAGE
WTHGT

DELAY
IDEAL
NOMORE

use
CUSE
EVUSE
KANY
KMOD
KSOURC
UCOND
UIUD
UMOD
UP1L
USTER

ABST
AMEN
BF
UABST
UTRAD

type*

P
r,m
m
m
P
r,m
P
P
P

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

P
m
P

P
P
P
P
P
P
P
P
P
P

m
m
m
P
P

description

birth before a certain specified age
proportion (or mean number) of children dead
mean number of children ever-born
completed fertility (to women aged 40+)
proportion currently married
proportion (or mean) of children surviving
proportion exposed
proportion pregnant
proportion single

proportion of deliveries attended
proportion of children receiving BCG
proportion of children having cough
proportion of children having diarrhoea
prop, of children receiving treatment for diarrhoea
proportion of children receiving DPT
proportion of children having fever
proportion of children receiving full immunisation
proportion of children having health card
height for age
proportion of children having measles
proportion of children receiving polio imm.
proportion of children receiving tetanus imm.
proportion of children receiving treatment for
proportion of children receiving treatment for
weight for age
weight for height

proportion wanting to delay next birth
mean ideal family size
proportion wanting no more children

proportion currently using contraception
proportion ever-used contraception
proportion who know of any method
proportion who know of any modern method
proportion who know of any source of method
proportion ever used condom
proportion ever used IUD
proportion ever used any modern method
proportion ever used the p i l l
proportion ssterilised

mean length of post-partum abstinence
mean length of post-partum amenorrhoea
mean length of breast feeding
proportion ever used abstinence
proportion ever used traditional method

cough
fever

characteristics
6
6
6

* p=proportion of women;
r=ratio

45
46
47

EDUC
MBEFXX
NOED

P
P
P

proportion with higher education
proportion married before a certain age
proportion with no education

m=mean per woman;
of two substantive variables



TABLE 4A.(4). Computed design effects (défis) for the total sample -
Demographic and Hcallh Surveys (DHS) programme.

(Source: Aliaga and Verma, 1991).

couitry-----

variable
group s. no.

1 1 BEFX
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3

4
4
4
4
4
4
4
4
4
4

5
5
5
5
5

6
6
6

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44

45
46
47

CDEAD
CEB..
CEB40
CHAR.
CSUR.
EXPOS
PREG.
SINGL

ATTE.
BCG..
COUGH
DIAR.
DIATR
DPT..
FEVER
FULL1
HCARD
HTAGE
MEASL
POLIO
TETA.
TREATC
TREATF
UTAGE
UTHGT

DELAY
IDEAL
NOMORE

CUSE.
EVUSE
KANY.
KMOD.
KSOURCE
UCOND
UIUD.
UMOD.
UPIL.
USTER

ABST.
AMEN.
BFEED
UABST
UTRAD

EDUC.
HBEFX
NOED.

-GHANA

10

1.24
1.02
0.98
1.50
0.99

1.19

1.21

1.33
1.35
1.50

1.39
1.20
1.43
1.08

1.91
1.18
1.58
1.04
1.05

1.21
2.14
1.36

1.16
1.76
2.48
2.57

1.21

1.40
1.32
1.21

1.B7
1.26

UGANDA
ZIHBABUE

20 30

1.26 1.47
1.24
0.99
0.98
1.06
0.94

0.79

1.38

1.25
1.18
0.98

1.05
1.20
1.30

1.30
1.18

1.33
0.94

1.10
1.33
1.25

1.14
1.22

1.26

1.20

1.09

1.73
1.43

1.03
1.18
1.30
1.02

1.12

1.23
1.01

1.34

1.18

1.24
1.26
1.07
1.42
1.19
1.63

1.19
1.06

1.08

1.20

1.17
1.66
1.48
1.66
1.61

1.34
1.09
1.19

1.05

1.82
1.57

DOMINICAN REP.
RflTÇlJAIIA DCDI iDVI JMnMrl

40 50

.16

.29

.33

.02

.53

.34

1.09

2.11

1.66
1.61
1.25

1.79
1.44
1.18

1.70
1.14
1.26

1.35
1.55
1.14

1.26
1.51
2.61
2.67

1.27

1.41
1.24
1.12

1.77
1.50

.14

.33

.16

.43

.30

.22
1.09
1.60

1.63
1.28

1.33
1.23
1.30

1.35

1.33
1.11
1.28

1.19
1.20
1.26

1.31
1.35

1.19
1.26

1.04
1.05
1.14

1.16

1.98
1.73

rLHW

60

1.20
1.09
1.21
1.12
1.05
1.09
1.05
1.16

1.35
1.01

1.08
1.13
1.06

1.07

1.04
1.05
1.28

1.08
1.43
1.09

1.21
1.38
1.53
1.58

1.19
1.15

1.02
1.09
1.09
1.07
1.09

1.53
1.26

BRAZIL
crvoT

70

1.14
1.31
1.12
1.43
1.28
1.34
1.12
1.35

1.26
1.38
1.29

1.22
1.31

1.24

1.20
1.22

1.20
0.97
1.15
1.28

2.28

80

1.46
1.57

1.37

1.20

2.49
1.62

1.14
1.23
1.42

0.99

1.54
1.34
1.83

1.11
1.64
1.50

2.27
2.70

1.66
1.32
1.89

1.66

1.20
1.24
1.24

3.07
2.24
2.96

ECUADOR KENYA
CPUITCAI TUAIIAun

90

1.28
1.29

1.38
1.26
1.15
1.04
1.41

1.68

1.60

1.08
1.21
0.95

1.42
1.62
2.19
2.18

1.28
1.24

1.09
1.15
1.11
1.13
1.23

1.95
1.43

100 110

1.34
1.33
1.15
1.18
1.87
1.10
1.16
0.97
1.77

2.03
1.17

1.40
1.03
0.87

1.00
1.11

1.13
1.64
1.26

1.35
1.82
1.54
1.73

1.40
1.01
0.85

1.36

2.02
1.82
2.23

1.51
1.34
1.59
1.48

1.54

2.10
1.23
1.39
1.07
1.07
.52
.23
.24
.01

.33

.26

.42

.54

.47

1.30
2.11
1.35

1.49
1.70
2.37
2.66
2.51

1.29

1.42
1.37
1.12

2.33
1.73
1.98

120

1.84
1.59

1.73

2.17

1.48
1.17

1.63

1.83

1.41
2.35
1.37

1.54
1.72

2.10

1.86
1.88

1.25
1.36
1.51

2.10
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4.3 CHOICE OF THE METHOD

The strengths and limitations of the various practical methods for computing sampling errors for large-scale surveys
have been indicated in the description of the methods in Chapters 2 and 3. The most important considerations are
summarised below with a view to indicating the method or methods which might be the most suitable choice in
particular circumstances.

Criteria in the Choice of a Method

Several criteria are involved in the choice of a method in practice. Roughly in order of importance, these include:

[1] availability and convenience of software for application of the method;

[2] issues relating to computational convenience, economy and speed;

[3] the type and range of statistics for which sampling errors are required;

14] the complexity of the estimation procedures involved;

[5] how well the sample structure fits or approximates the model assumed for application of the method;

[6) statistical properties of the various methods; and

[7] suitabil i ty of the method to meet special requirements such as analysis of variance components or
estimation of non-sampling components of variance.

Linearisation

The linearisation approach has certain advantages in being able to handle a diversity of designs more easily, especially
for the estimation of means and proportions. This can be important in the context of household survey programmes
where a number of surveys with different designs may be involved. Another advantage is that less computational work
is involved than the alternative approaches based on repealed replication. Despite the rapid improvement in computer
facilities, the volume of compulalional work can still be an important consideration in the choice of a particular
method, especially in developing countries. In fact, the difference between the methods in this respect becomes more
marked for samples with many strata and PSUs, because with repeated replication, the number as well as the average
size of replications increases in proportion to the number of sample PSUs. it is an important point because it is not
uncommon in developing country surveys to use samples with several hundred PSUs (Illustration 3A).

However, perhaps the critical factor favouring this method is its advantage as regards the availability of general
purpose 'portable' software for its application. Many developing country organisations are not in a position to develop
and maintain their own special purpose software. (Seclion 4.6.)

Its main limitation is the d i f f i cu l ty (or at least the need for special procedures) in dealing with complex statistics and
estimation procedures.

Repeated Replication

Repeated replication methods also have their advantages, and represent the only available choice for certain special
purposes. They are especially appropriate for handling complex statistics (such as coefficients in multiple regression);
and even more importantly, for complex estimation procedures involving a number of adjustments to the data - which
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4 Computing Sampling Error* in Practice

are not so uncommon in survey analysis even in developing couniries. Some examples of such application are given
in Illustration 5B.

Of the two main repeated replication methods, JRR is preferable for being technically the simpler and also somewhat
more flexible, though generally it involves more computational work than BRR. The BRR method is technically more
complex, and also more restrictive in the sample designs handled, or at least the extra steps required in dealing with
designs other than the basic paired selection model. In designs with many small PSUs, it may be necessary to define
more suitable - generally larger, fewer and more uniform computing units. This requires care in ensuring that the
redefined units still properly reflect the actual sample structure: otherwise the variance estimation may be biased. An
example of such redefinition is provided in I l lustrat ion 4B below.

Nevertheless, while the linearisation approach remains the most commonly used mcihod, the use of repeated
replication procedures is increasing, especially for complex statistics.

The Overriding Consideration.
Regarding the comparison between linearisation, JRR and BRR, the main conclusion is that in many circumstances
any of these methods can provide satisfactory results: when judged by several criteria none of them has been found
to be strongly and consistently better or worse (Kish 1989, 13.5). Therefore the choice among them is chiefly
determined by practical considerations of convenience, cost and availability of software.

Independent Replications

Note should also be taken of the possible uses of the simple independent replication approach in certain
circumstances, as noted in Section 3.2. Where the sample design permits, there can be advantages in considering the
simple replicated approach, especially in developing country circumstances. This is despite the various (and some
serious) limitations of the method. The simplicity of the approach means thai , where applicable, the mcihod will
encourage the compulation and presentation of sampling errors. This is important because at present, the common
siiualion unfortunately is that in many surveys no information whatever is provided on sampling errors. With ihc
simple replicated approach no special-purpose software is required and some informaiion on sampling errors can be
generated simply as a by-product of the normal process of tabulation of the survey data. The computational cost is
(he need to produce separate estimates for each replication.

Il is also not necessary to rely on the independent replication approach as the sole or even the main method of
variance estimation: where applicable, the mcihod can be used to complement the results from more precise methods
of variance estimaiion. U can be used to obtain quickly and economically rough estímales of sampling error for a wide
range of statistics, from which general patterns may be identified and subsets for more precise computations using
more sophisticated methods selected. The simple method can also be used 10 check the results of more complicated
approaches for gross computing errors. Actually, comparisons among replicated estimates can be helpful more
generally in identifying unusual patterns in ihe survey results which indicate the need for rechecking the survey
procedures.
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4.4 Filling the Sample Slruclure lo Ihe Assumed Model

4.4 FITTING THE SAMPLE STRUCTURE TO THE ASSUMED MODEL

Variance estimation requires two or more replicates selected independently from each stratum. As already noted in
Chapters 2 and 3, in practical applications it is sometimes necessary to combine or redefine actual PS's and strata
lo obtain the primary units and strata to be used in the computations. This may be necessary for several reasons.

(1) It is common in practice that the actual sample structure does not exactly correspond to the model required
in the variance estimation procedure. To apply the procedure some additional assumptions have lo be made
regarding the sample structure. Ideally one would like to ensure that any bias resulting from additional
assumptions is unimportant, or at least that it results in 'safe' (conservative or over-) estimates of variance.

(2) Redefining computing units can reduce and simplify computational work.

(3) Redefinition may also be introduced to improve statistical properties of the variance estimates generated,
such as reducing their variance or bias, or making their sampling distribution more nearly normal.

4.4.1 COLLAPSED STRATA TECHNIQUE

A common feature of many sample designs is the selection of a single PSU per s tratum. This is achieved either
explicitly through fine stratification or implici t ly through systematic selection. In some designs, special techniques such
as 'controlled selection' are used in which more strata (controls) are introduced than the number of primar)' uni is
which can be selected. An example of the latier is provided by a receñí food consumpiion survey in Indonesia where,
because of ihe complex and intensive naiure of ihe survey, ihe sample had lo be restricled lo a relaiively small
number of PSUs, but it was necessary to simulianeously control for diverse urban-rural , regional, ecological and
human factors affecting patierns of food consumpiion. The use of such techniques helps lo improve sampling
efficiency, bul in general does nol permil unbiased esiimalion of variance. The usual method of variance estimation
in such situations is called the collapsed strata technique. Essentially, il amounis to treaiing each set of two or more
PS's as random selcciions from a single stralum, thus disregarding some of the original stratification. Generally this
involves some over-eslimaiion of variance. The routine praciice is to minimise ihe amount of collapsing, only to the
point that each newly defined siraium contains ihe minimum number (namely 2) of PS's esseniial for variance
esiimalion. Collapsing in pairs also has ihe advantage of simple variance csiimation formulae, which is useful wilh
linearisation methods, but much more important in methods like BRR. (Illustrations 2A and 4B.)

Greater degrees of collapsing, for example in triplets instead of pairs of strata, would lend lo increase the
overesiimation but may also reduce ihe variability of ihe compuied variances (Kish and Hess 1959; see also 4.4.5
below). Hence in lerms of overall accuracy (mean squared error) ihe best strategy for collapsing strata is a more
complicated issue. In a discussion of the issue, Rust and Kaltori (1987) note lhai while collapsing in pairs "is generally
appropriate for national estímales from large-scale surveys wilh 60 or more PSUs, a greater degree of collapsing may
be appropriate when a small sample of PSUs is selccied, and especially so when the number of PSUs is as low as,
say, 20." The authors also noie that a greater degree of collapsing is indicated when the sample size per PSU is small,
or when subclass as distinct from lotal sample estimates are important, or when the differences between the strata
means are small.
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Since the actual gain from stratification depends on the difference between stratum means, the overestimation due
to collapsing strata also depends on the same factor. On the basis of a simple model it can be shown that the
overestimation is twice as large as the actual reduction in variance as we move from a 2-PSU per stratum design to
a finer stratification with 1 PSU per stratum. In other words, there is an apparent loss in precision equal in magnitude
to the actual gain in precision (Cochran 1963, Sec 5A.11). This has an important consequence in practice: collapsing
of strata should be done so as to minimise Ihc difference between strata means. In systematic samples this is generally
ensured by collapsing adjacent implicit strata, in so far as ordering of the units ensures that similar units come
together. In collapsing explicit strata, it is necessary to do so on the basis of stratum characteristics. The important
thing to ensure is that this is done on the basis of characteristics of the strata known before the survey, and not on
the basis of the characteristics of the particular units which happen to be selected; otherwise the variance may be
seriously underestimated. This also requires that information on stratum characteristics is recorded and preserved.
(See the warning in Illustration 2B.(2).)

The above also makes it desirable that collapsed strata arc similar in size; if not, the variance formulae will need
adjustment. Essentially the adjustment is to weight the value for each stratum in proportion to the stratum size.
Specifically, if y, and y; are the estimates for two strata of size S, and S2 respectively, and y the total for the pair, then

the expressions (yj-y/2)2 and (y2->/2)2 in the paired selection variance formula (equation 2.7, expressed in slightly

different notation):

var(y) =

are replaced by, respectively

(y\-Wry)2 and (y2-W2.yf

(4.1)

*, s* (4'2)
where W. = —— ; W, = ——.1

For ratio means the adjustment is likely to have small effects for moderate differences in the size of the collapsed
strata. However a gross overestimation can result in the case of sample totals or aggregates (Kish 1965; Section 8.6B).

In grouping systematically selected PSUs to define 'implicit' or 'collapsed' strata, one should not cut across boundaries
of explicit strata within which the systematic selections were conducted independently. (For instance, if an explicit
stratum contains an odd number of selections, one of the collapsed strata may be assigned three rather than two units
so as not to cut across explicit strata used in sample selection.)
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4.4.2 RANDOM GROUPING OF UNITS WITHIN STRATA

The above discussion concerned collapsing of strata leaving the primary uni t s unchanged. Il is also possible to group
or combine the units in various ways. One technique is to randomly group.unils within a s tratum so as to form larger,
fewer, more uniform in size or otherwise more convenient 'pseudo primary selections' to serve as the computing units
for estimating variance, This technique is useful when, in the whole sample or some of its strata, the original PS's
are loo small and/or too numerous for the purpose. The technique is particularly useful in dealing with small
subclasses. It is often unavoidable in the application of repealed replication methods.

With random grouping, no additional bias is introduced in the variance estimation; however because of the reduced
number of computing units ils variabilily may be increased. On the other hand, there are also some advantages.
Grouped units can be made more uniform in size. The technique also reduces computational time, and ihe
distribution of characteristics of the grouped units, based on sums of variables, better approximates normality.

In random samples of units, the appropriate method to group unils is to select random subsamples of ihose units.
In a systematic sample, the groups should be formed by selecting 'interlocking' systematic subsamples; for instance
if eight unils numbered 1 lo 8 in a systematic sample are to be grouped into two pseudo unils, unil numbers (1, 3,
5 and 7) may appear in one group and ihe remaining in the olher (see Illustration 4B). Grouping of adjacent units
(which is sometimes done for convenience) would tend to under represent the benefit of systematic sampling.

4.4.3 COMBINING UNITS ACROSS STRATA

In samples consisling of many small PS's selected independenily from many strata, 'unils may be randomly grouped
across straia so as to give fewer straia and fewer and larger unils for variance compulation. As with random grouping
of units within slraia. the technique docs not introduce bias but may increase variability of the variance estimator;
it has similar advantages of reduction in computing time and of improved approximation to normality. Combining
across strata may be accompanied (preceded) by random grouping of unils within strata. A convenient way to apply
this method would be to first group PS's within strata as necessary so that each stratum contains the same number
of grouped units, and ihen form ihe final compuiing unils by taking one such grouped unit from each siratum at
random. Deming (1960) terms ihis icchnique "ihickening the zones".

The creation of independent replications as discussed in Section 3.2, each containing one or more units from every
stratum, can be regarded as an extreme example of this procedure.

4.4.4 SO-CALLED 'SELF-REPRESENTING PSUs'

The term 'self-representing PSUs' is sometimes used to refer to units which appear in the sample with certainty. This
happens when some of the units described as 'PSUs' in the frame are considered so large and important thai they
are automatically included into ihe sample, while elsewhere oiher unils of the same description form the true PSUs
and are subjeci lo the sampling process. The description of the former as 'self-representing PSUs', though common
and possibly convenient for descriptive purposes, can be confusing and should be avoided. Each such unil actually
forms a stratum, and the next stage unils within it actually subjeci to sampling are ihe PSUs to be used (or
appropriately combined as explained above) for computing sampling errors.
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4.4.5 VARIABILITY OF THE VARIANCE ESTIMATES

It is important to realise that variance estimates from samples are themselves subject to variability, particularly for
samples based on a small number of primary selections. The precision of variance estimation is a complex subject.
For reasonably large samples with good control to eliminate extremes in 'cluster sizes' (ie in sizes of the primary
selections), a useful approximation to the coefficient of variation of a variance estimator is given by Kish (1965;
Section 8.6D) as:

"• - - (4-3)

where "df1 is Ihe degrees of freedom, approximately equalling the number of PSUs selected less the number of strata.
With 2 PSUs per stratum from H strata, we have df = 2H - H = H. In general, with a total of a primary selections
from H strata, we have df = a - H, since one df is lost in taking the squared differences from the stratum mean in
each stratum for the estimation of variance. For example, with 48 PS's with 3 from each of 16 strata, we have df =
48-16 = 32; however, with the 48 selections coming in pairs from 24 strata, we have df = 48-24 = 24. Hence with
less detailed stratification, the variance estimation is more precise, though the magnitude of the variance itself is
generally increased. In so far as the latter is more important, stratification is usually carried out to the maximum
extent possible, often even beyond the level of 2 PSUs per stratum - resorting to 'collapsing' for the purpose of
variance estimation.

In the case of a systematic sample, it was noted above that the common practice is also to collapse pairs of adjacent
strata to form new computing strata for variance estimation. With a greater degree of collapsing than the min imum
required (eg. triplets in place of pairs), degrees of freedom and hence precision of the variance estimation is increased;
bu t at the same time the overcstimation bias is also increased. An alternative procedure with systematic selection,
referred to in Section 2.4 (equation 2.22) is as follows. In place of forming (a/2) non-overlapping pairs of adjacent
units, one may utilise all possible (a-1) successive differences among the ordered list of (a) uni ts selected
systematically. The advantage of this procedure is that it does not increase the overestimation due to collapsing
beyond that with the normal pairing, but it reduces the variance of the variance estimator.

The lack of precision of sampling errors computed for individual geographical domains can be a particularly serious
problem because each such domain may contain only a small number of primary selections. What can be done to
reduce this problem? The basic 'remedy' is to pool compulations from several samples, and replace the results of
individual computations by appropriately averaged values, as discussed more fully in Chapter 6. In addition, one may
avoid computations for separate domains and impute values from the total sample, perhaps with some appropriate
adjustment if necessary. Certain sample designs involve the selection of a small number of large PSUs, bu t the
selection of many small clusters or area units at the second stage. In such cases, an option may be to compute
variances by treating the more numerous SSUs as if they were the primary selections, and then to adjust the results
for the excluded contribution of the first stage (Kish 1989, Section 14.4). This is useful if the first stage contribution
is small or can be estimated from some other source.

78
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4.4.6 CODING OF THE SAMPLE STRUCTURE

To compule sampling errors il is essential thai all necessary information on ihc sample structure is available, ideally
on the computer data files, as emphasised earlier (Section 4.1). At a minimum the information should include

[1] Identification of the strala as used in the compulations, taking into account any collapsing or other
modifications which may have been made to the original stralification, and the procedures adopted
to deal with systematic sampling.

[2] Identification of ihe primary computing units, taking into account grouping or combining of the original
selections, and ensuring lhal at least two such units are available from each stratum.

[3] Weights assigned to ult imate units, ideally as an integral part ol the survey micro-level data.

[4] Sampling rales, 10 compute ihe finile population correction if relevant.

(5] Idenlification of the domains and subclasses for which sepárale estimates are to be produced.

Additional information will be required if the overall variance is to be decomposed into components according to
different stages of sampling or estimation, or other aspects of the sample structure. (Chapter 5.)

4.5 REDUCING COMPUTATIONAL WORK

There are several ways of reducing the work involved in the computation of sampling errors: confining ihe
computations to an appropriately selected subsamplc only; redefining the sample structure for the purpose;
simplification of the variance esiimation procedure; and imputing errors computed for a subset of statistics to other
statistics.

Compulalion Over a Subsample

A simple opiion is lo base ihc computations on a subsample of the full sample. The subsample should of course
reflect the structure of ihe fu l l sample; it is also necessary to correclly establish Ihe relationship between the variances
corresponding lo ihe full sample and the subsample. This procedure is useful only when the sample consists of a large
number of primary units, so thai ihe loss in precision in variance estimation from only a subsample is acceptable. Also
Ihc subsampling rate should be small enough so that the saving in computing lime more than compensates for Hie
additional cost and irouble of consiruciing ihe subsample. Two obvious examples of where the approach may be
considered are: (i) computing sampling errors for large census samples which are often attached lo the ful l census
10 collcci additional information; and (ii) sample surveys based on a large number of elements selected in a single
stage. Occasionally ihe lechnique may also be considered for clustered designs wilh numerous small PSUs, such as
small clusiers of households.

The basic idea is lo estimaie unit variance from the subsample and then lo use it in the variance formula for ihe ful l
sample in ihe ordinary way. The concepl of unil variance is useful when the variance or a component of variance is
inversely proporiional lo ihe number of uniis (see Section 6.3 for further discussion). As a simple example, consider
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4 Computing Sampling Errors in Praclice

a SRS of size n from which a random subsample of size n' unils is selected. In the ordinary expression for variance
of a mean (corresponding to the full sample)

var(y) = I —¿ U2, where f = —
\ n ) N

the idea is to estimate unit variance s2 from the random subsample as

n'-l

(4.4)

(4.5)

where the summation is over n' uni ts in the subsample. Similarly in estimating the variance of a total y from a
multistage sample

= (\-f).a.
(4.6)

the quant i ty in the square brackets has been estimated from a random subsample of aj primary selections from the
a primary selections in the full sample. The same idea can be extended in a straightforward way to a stratified sample,
by applying the above expression separately for each stratum, provided at least two primary units appear in the
subsample for each stratum. Introducing subsampling wi th in sample PSUs would generally result in much more
complex relationships between the required variance for the ful l sample and the computed variance from the
subsample - requiring some additional assumptions or modelling in most situations.

With rapidly improving computer facilities, the introduction of subsampling to reduce computing work is hardly worth
considering in normal household survey work, though it may be convenient for some other special purposes as noted
earlier.

Grouping of Units and Strata

Several techniques have already been mentioned in the previous section. Random grouping of unils and combining
across strata can be a much more useful means of reducing computational work than for example the method of
subsampling. For certain methods (such as the BRR), some grouping and combining is almost unavoidable if the
number of units is large and variable across strata.

Simplifying the Variance Estimation Procedure

Some simplification and approximation is already involved in the various practical procedures for variance estimation
described in the previous chapters. What makes these procedures 'practical' is that the simplifications introduced
greatly reduce the computational work, but generally with only a minor effect on the accuracy of the variance
estimations generated. For instance, with the assumption of independent and with-replacemenl selection of PS's within
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4.5 Reducing Compulaiional Work

strata, variance can be usually estimated with only a small approximation, simply in terms of certain quantities
aggregated to the PS level.

Beyond such basic assumptions underlying the various practical methods, it is sometimes also convenient to introduce
additional approximations to reduce the computational work involved. Here arc some examples. The finite population
correction is disregarded (often with good justification), or averaged or assumed uniform within strata even though
actually it may be much more complex. The same may be done in relation to sample weights if they do not differ
greatly between units. In the application of the BRR method for instance, one may resort to 'partial balancing' if the
number of strata is too large. In the application of replicated methods generally, some steps in the estimation
procedure (such as the application of post-stratification weights) may be applied only once for the full sample, rather
than to each replication separately as required by the method if applied strictly. There are many other specific
instances where certain (hopefully unimportant) components of variance are ignored with a view to simplifying the
computations involved.

Imputine Sampling Errors

The magnitude and pattern of sampling errors may be related across similar surveys, similar subclasses or similar
variables on the basis of empirical results and/or appropriate models. This issue is the topic of Chapter 6. Here we
emphasize that the establishment of patterns of similarity is potentially the mosi effective way of reducing the amount
of fresh sampling error computation which needs to be done in any particular survey.

ILLUSTRATION 4B DEFINING COMPUTING UNITS AND STRATA

In many practical situations, the sample structure requires some redefinition in an appropriate way before a method
of variance estimation can be applied. For example, though the BRR method is not confined to two primary
selections per stratum, that represents the most convenient design for the method. Some redefinition of the sample
structure may be necessary or convenient in the application of other methods as well-

The example in Table 4B.(2) is based on a survey in Colombia and shows how the sample structure may be specified
for the purpose, applying the various ideas discussed in the preceding section. The design consisted of two distinct
domains:

[1] Certain large localities were taken into the sample with certainty, as 'self-representing' units. Each locality in
fact formed a separate stratum from which a number of smaller areas (clusters) were selected systematically.
These clusters formed the effective PSUs in Domain [1].

[2] The second domain was composed of smaller localities. A systematic sample of localities were selected first,
and then a sample of clusters taken from each selected locality.

Thus the type of areas (clusters) which form the effective PSUs in the first domain, formed the second stage units
in the second domain. Computing strata and PSUs were defined as follows.
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In Domain [1], each 'self-representing' locality (marked with a consecutive set of asterisks in the table) was divided
into one or more computing strata, each stratum consisting of a set of consecutive areas (the actual PSUs or clusters
in the sample). Thus, for example, Barranquilla was divided into two computing strata (numbered 01 and 02 in the
table), the first consisting of clusters 1-14 and the second consisting of clusters 15-30, the clusters being numbered
in the order of selection. Here, as elsewhere, a desirable objective was to make computing strata and units reasonably
uniform in size. Next, in each stratum so defined, alternative clusters from the ordered list were grouped lo define
two 'interlocked' computing units (replicates) to be used as primary selections for variance estimation. Thus in each
of the above two strata, odd numbered clusters formed the first and the even numbered clusters formed the second
replicate. This is the 'combined stratum' technique involving the linking of alternative clusters across implicit strata,
resulting from systematic sampling, into sets each of which forms a computing unit . It also involves collapsing pairs
of adjacent sets so defined to form a computing stratum with two computing units.

The large metropolitan area, from which 136 clusters had been selected, was divided in the same manner into 9
computing strata (numbered 35-43 in the table), each with 2 computing units.

In Domain [2], computing units were taken to be the same as the actual PSUs (localities). Strata were defined to
include pairs of adjacent sample localities, following the systematic order of selection. This is the usual way of
constructing 'collapsed strata' each with 2 units from a systematic sample of PSUs.

In this manner, 43 computing strata were defined as shown in Table 4B.(1), each with two computing replicates. The
redefined design is very convenient for the application, especially of methods like the BRR, being based on the paired
selection model. It also reflects the original sample structure in that the stratifying effect of systematic sampling is
retained, apart of course from the usual overcstimation of variance which the collapsed strata technique involves. By
contrast, the random grouping of clusters and combining randomly across the implicit stratification provided by
systematic selection does not bias the variance estimation, though it reduces its precision.

Sufficient information is not available to judge in quant i ta t ive terms the effect of such redefinition of the sample
structure on the bias and precision of the variance estimates generated. Nevertheless, the illustration provides a useful
example of the application of various techniques described in the preceding section.
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TABLE 4B.(1).An example of the definition or computing units (clTectivc primary selections)
for the calculation of sampling errors.

(Source: Estudio Nacional de Salud, Bogóla, Colombia).

stratu

01*
02*

03

04*

05
06
07
08
09
10
11
12
13

14*
15*
16*
17*

18
19
ZO
21
22
23
24
25

26*
27*
28*
29*

30
31
32
33
34

35*
36*
37*
38*
39*
40*
41*
42*
43*

NOTES.
one or

• clusters confuting
unit

01,03,05,07,09,11,13 01
15,17,19,21,23,25,27,29 03

(14) 05

01,03,05,07,09,11,13
15,17,19,21,23,25 07

(20) 09
(18) 11
(18) 13
(12) 15
(21) 17
(15) 19
(16) 21
(18) 23
(16) 25

01,03,05,07,09,11 27
13,15,17,19,21,23 29
25,27,29,31,33,35,37 31
39,41,43,45,47,49,51 33

(10) 35
(6) 37
(18) 39
(20) 41
(16) 43
(14) 45
(17) 47
(16) 49

01,03,03,07,09 51
11,13,14,17,19 53
21,23,25,27,29,31 55
33,35,37,39,41,43 57

(8) 59
(26) 61
(19) 63
(17) 65
(18) 67

01,03,05,07,09,11,13 69
15,17,19,21,23,25,27 71
29,31,33,35,37,39,41 73
43,45,47,49,51,53,55 75
57,59,61,63,65,67,69,71 77
73,75,77,79,81,83,85,87 79
89,91,93,95,97,99,101,103 81
105, 107.. .....115, 117,119 83
121 123 131 133 135 85

clusters confuting
unit

02,04,06,08,10,12,14 02
16,18,20,22,24,26,28,30 04

(8) 06

02,04,06,08,10,12,14
16,18,20,22,24,26 08

(19) 10
(16) 12
(17) 14
(14) 16
(18) 18
(18) 20
(24) 22
(16) 24
(18) 26

02,04,06,08,10,12 28
14,16,18,20,22,24 30
26,28,30,32,34,36,38 32
40,42,44,46,48,50,52 34

(12) 36
(10) 38
(16) 40
(14) 42
(16) 44
(18) 46
(14) 48
(16) 50

02,04,06,08,10 52
12,14,16,18,20 54
22,24,26,28,30,32 56
34,36,38,40,42,44 58

(8) 60
(6) 62
(14) 64
(14) 66
(13) 68

02,04,06,08,10,12,14 70
16,18,20,22,24,26,28 72
30,32,34,36,38,40,42 74
44,46,48,50,52,54,56 76
58,60,62,64,66,68,70,72 78
74,76,78,80,82,84,86,88 80
90,92,94,96,98,100,102,104 82
106,108..... ...116, 118,120 84
1?? 174.. .... H? 114 17A fV>

(*) indicates random groupings of clusters from the same "self -representing PSU1 to forir
more pairs of computing units.

indicates the nunber of clusters grouped
In the remaining cases, the figure in parentheses
to form a single computing unit.
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4.6 SOFTWARE FOR VARIANCE ESTIMATION

The application of the variance estimation procedures described in Chapters 2 and 3 requires access to necessary
computer facilities, especially to computer software of known quality and capability. The only procedure that may be
applied as a part of the normal tabulation process is the independent replication method of Section 3.2.

Basic Requirements

The main advantage of general methods of variance estimation is that they can be applied to a wide variety of sample
designs and types of statistics without modification to the basic procedure. This makes it possible to develop general
purpose software for their application. Ideally, one should be able to perform large-scale, routine compulations of
sampling errors simply by specifying certain parameters for use by a suitable general purpose software for variance
estimation.

Kaplan et al (1979) summarise some basic requirements which general programs of variance estimation from complex
surveys should satisfy. They note lhat a general program "ideally should have great flexibility in dealing with various
designs. The program should allow the user to describe his design exactly, accounting for strata, clusters, various stages
of sampling, and various types of case weighting...If a program is to be of general use it must be reasonably convenient
to learn and use. Such a program will not only be more useful, but will be easier to check and debug, and this, in
turn, will improve accuracy. A good rccoding system would allow for easy calculations of estimates for subpopulations.
Missing value codes should exist and the program should be specific about its treatment of missing values, and small
sample sizes (eg cluster sample sizes of zero or one)". Regarding the output generated, the authors note that it should
"echo all the user commands: all options which were specified should be clearly repeated, including a description of
llic design. The labelling should be clear, and allow the user flexibility in naming his variables. The documentation
of the ou tpu t should be clear, concise and self-explanatory. It should also provide references which explain the
statistical techniques programmed."

In large-scale applications a particularly important requirement for software is the abi l i ty to handle in an efficient
manner the large number and variety of statistics for which sampling errors have to be computed. Efficiency refers
not only to computing lime, but also (and even more importantly) to the time and trouble required by the user in
specifying the computations to be performed. In more specific terms, the following soflwarc features are desirable
(Verma, 1982):

[1] The program should be able lo handle, simply and cheaply, a large number of variables over different sample
subclasses. It should not require the use of large computers or other very specialized facilities.

|2] In relation to the sludy of differenlials belwccn subpopulations, sampling errors for differences between pairs
of subclasses should also be computed.

[3] It should be possible lo repeat, in a simple way, the entire set of calculations for different geographical or
administrative regions; such breakdowns arc often required for substantive survey results.
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[4] The computational procedure musí lake inio account the actual sample design, in particular the effects of
clustering and stratification, which influence the size of sampling errors. However, the program should not be
limited lo a particular sample design, such as a two stage design or the paired selection model.

[5] It should be able to handle weighted data.

[6] As far as possible, the program should not require any particular arrangement or form of input data. Where
recoding of the raw input data is required, it is desirable that the software package itself should be able to
handle this, wi thou t the need to write special programs for that purpose alone.

[7| In addition to calculating standard errors, it is also desirable that the program compute certain other derived
statistics, such as coefficients of variation, design effects, and roh values. Such computed values may assist users
to extrapolate to other variables and subclasses for the given sample and possibly also to fu ture surveys. One
of the objectives of calculating sampling errors is to provide information for sampling statisticians a t tempting
lo design other studies under similar survey condilions.

ln-House Dcvclopmenl Versus Acquisition of General Purpose Sofiware

For organisaiions engaged in conducting diverse surveys on an ongoing basis, an important decision to be laken is
whether lo develop and maintain in-house its own special purpose software, or to try and acquire suitable general
purpose software from some outside source. Several factors have to be taken into consideration in reaching a decision.
The issue in the context of overall survey data processing has been considered in some detail in United Nations (19cS2;
pp 99-114). The conclusion from the review is summarised as follows:

It is true lhal slaiistical offices in several developed countries have invested heavily in the development of
general-purpose software systems for use on a wide variety of iheir sialislical applications. These systems have been
necessary to meel Ihcir specialized rcquiremenls for survey processing, as well as lo integrate a standard data
management philosophy across all applications. This is not lo say thai ihese organisations could not have been
adequately served by already existing software packages but rather, in most cases, that the decision lo develop reusable
systems was based on a specialized need and the availability of high level programming staff lo do ihe development.

Mosi developing country siaiistical offices do not have ihe luxury of having an abundance of high level programming
staff to be able lo conlemplate development of specialized reusable software packages. These organizations are
encouraged lo use existing software systems available from other statistical offices or vendors, and 10 intégrale them
with smaller customized routines required for special needs, in order lo avoid ihe need lo program one-lime-use
cusiomizcd sysiems. Wriiing customized software would seem like the more risky approach lo lake, as dala processing
siaff turnover is usually qu i t e high in developing countries, making the maintenance of cusiomizcd software v i r t u a l l y
unmanageable.

The above does not imply that ihere can be no problems in ihe choice and operaiion of appropriate software
packages, or that such packages arc available to meel all or most of the needs of a con t inu ing survey programme.

The main advantage of in-house development is the potential ability of the software to meet specific requirements
more effectively; while the main reason for seeking general purpose software from ouisidc is usually ihe lower cosí
and lime involved in ils mainienance and use.
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ILLUSTRATION 4C SOFTWARE FOR COMPUTING SAMPLING ERRORS: A REVIEW

This review of the available general purpose software for computing sampling errors in the context of complex, large
scale surveys is presented in the form of an "illustration" for two reasons. Firstly, the review cannot be complete for
lack of information: not all software is publicised, or is explicitly placed in the public domain. Secondly, the s i tua t ion
is prone to change and any information which can be provided here is of less long-term value than (hopefully) the
other material included in this Technical Study.

A General Review of Available Software

The situation regarding software for variance estimation is rather different from that of software for general survey
processing. For Ihc latter, a variety of general-purpose programs are available, and often the user's main concern is
to choose the onc(s) most suited for his or her particular needs. However, in ihe area of variance estimation, the
problem still is that very little software is available which is suitable for general use by different users. Of course there
exist within individual organisations many special-purpose programs for variance estimation. However the vast
majority of these are developed and maintained for the concerned organisation's own needs and specific applications,
and arc essentially non-portable and unsupported for use by other organisations or individuals.

For a particular user the suitability of any acquired general-purpose software depends on a variety of factors such as
(i) particular requirements of the user, eg the type and diversity of sample designs encountered, the volume and
sophistication of ihc computations required; (ii) hardware, software and 'pcrsonware' environment; (iii) flexibility,
convenience, accuracy and reliability of the software; (iv) its portabil i ty to different settings; (v) how well the software
is maintained by the supplying organisation; (vi) the degree of technical sophistication required for its use; and (vii)
its cost, including the cost of in i t i a l purchase, maintenance and operation.

There arc a small number of programs which could be considered suitable for general use. However a selection among
even this small number is not easy. The available descriptions of software tend to be incomplete. I i is d i f f i cu l t in
part icular to obtain reliable information on how portable and well supported any program really is. Claims made by
suppliers in this regard are not always reliable, or at least may not be up-to-date. In any case the s i tuat ion regarding
software availability is constantly changing, and for this and other reasons, it is not possible in the present s tudy to
make defini t ive recommendations on particular programs. Woltcr (1985) provides a description of 14 packages which
were believed at the time of the review to be 'portable' and 'available' to some degree. Generally, the descriptions
are not detailed or complete, and most cases appear to have been supplied by the developers themselves rather than
being the result of an independent evaluation. The 14 programs mentioned above are listed in Table 4C.(1), with
some brief remarks.

It can be seen from the table that even among this very l imited number of programs, the great majority cannot be
considered easily available or portable for general application. For example, some were not actually available at the
time of the review (nos 1, 2, 9, 13 and 14 in the table below); some were limited to special applications and designs
(4, 5, 6, 8); while some others were integrated with large systems not readily or cheaply available (6, 7, 10, 11). This
leaves only PC CARP and CLUSTERS from Ihe list. On the basis of this review the general conclusion regarding
the availability of suitable variance estimation software to developing country survey organisations have to be rather
pessimistic at this stage. Perhaps there arc other suitable programs which have been missed in the review, or have
been developed since. Nevertheless the above remarks underline the point that there is a dearth of good general
purpose software for variance estimation which meet the basic requirements of flexibility, portability, reliability, ease
in learning and using, good documentation, computing efficiency, low cost, and above all, active maintenance and
support by the supplier.
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TABLE 4C(1). A review of general variance estimation programs.
(Source: Woller, 1985)

Developer/Distributor

01 BELLHOUSE
D Bellhouse
Univ of Western Ontario, Canada

02 CAUSEY
Causey
Bureau of the Census, USA

03 CLUSTERS
V Verma
International Statistical Institute

04 FINSYS-2
U E Frayer
Colorado State University, USA

05 HESBRR
G K Jones
National Centre for Health
Statistics, USA

06 HASST1H & NASSTVAR
D Horgenstein
Westat Inc, USA

07 OSIRIS IV
L Kish
Univ.of Michigan, USA

OB PASS
D Thompson
Social Security Administration, USA

09 RGSP
F Yates
Rothamsted Experimental Station, UK

10 SPLITHAVES
J R Pryor

. Australian Bureau of Statistics

11 SUDAAN
V B Shah
Research Triangle Institute,USA

12 SUPER CARP
U Fuller
Iowa State University, USA

13 U-SP
G B Uetherill
University of Kent, UK

14 VTAB & SMED83
National Central Bureau of
Sweden

Remarks

Not yet available

No longer available.

New portable PC version
available since 1986;
some support by ISI; also
supplied by the DHS programme
to participating countries.

Specifically for forestry
applications;
restricted to certain designs.

Developed specifically for
Health Examination Survey;
restricted to 2 PSUs per
stratum designs.

BRR restricted to 2 PSUs
per stratum design;
requires SAS.

Expensive (also large
annual renewal cost);
not easily portable.

Not portable;
restricted to UNIVAC.

Versatile, but no longer
formally supported.

Part of ABS's
Survey Facilities System;
not portable.

Usable only in conjunction
with SAS system.

New portable PC version
available (PC CARP).

Not yet available .

VTAB no longer distributed;
SHED 83 still under development

At the time of the review in 1985



4 Computing Sampling Errors in Practice

In the following subsections, two of the more widely available and used programs (PC CARP and CLUSTERS) are
briefly reviewed. Fuller details are available in users' manuals from the suppliers. Both programs are available for use
on personal computers, free or at a nominal cost.

PC CARP: Cluster Analysis and Repression Program for Personal Computers

A description of the program is available in Fuller et al (1987).

PC CARP is available on IBM PC (AT or XT) and compatible computers with math co-processor and a minimum
of 410K memory. The program is written almost entirely in FORTRAN (with a small portion in IBM Assembly
language) and runs under DOS version 3.0 or higher. For variance estimation, the linearisation procedure (Ch. 2)
is used. The program has a wide range of very useful analysis capabilities as summarised in the tables below
reproduced from the above mentioned reference. However, before discussing these capabilities, it is important to note
two limitations of the program in its present version. Firstly, in terms of sample design, the program has a limitation
which may restrict its application in certain situations: presently it can be used to compute variances for one or two
stage designs only. The second limitation is that the program assumes that there are no missing values, ie all data are
available or have been imputed. Though a routine is provided for hot deck imputation of missing values, this
restriction is inconvenient. Missing values occur in all surveys and in many situations it is more appropriate (and
simpler) to exclude items with missing values from the computations, than to always have to impute them using a
more or less arbitrary procedure.

Turning to Table 4C.(2) summarising analysis capabilities of the program, 'Population Analysis' refers to the
computation of sampling errors for aggregates, ratios and differences of ratios for the total sample. This includes
standard errors, design effects and, except for differences of ratios, relative standard error and covariance matrix of
any specified set of estimates. 'Stratum Analysis' refers to the decomposition of variance into within and between
stratum components. 'Subpopulation Analysis' means computation of sampling errors for subclasses defined by
crossing two or more classification characteristics. Sampling errors may be obtained for any set of'estimates under
the classification structure so defined; however the full covariance matrix is not produced.

The above capabilities meet the common requirements of sampling error computations in large-scale descriptive
surveys for complex statistics up to ratios, and in some cases, differences of ratios. A more distinguishing feature of
the program is the provision for some other analyses which include the following.

[1] Two Way Table Analysis refers to analysis by two classification variables and a dependent variable.
Tables of cell totals, of proportions based on row totals, and of proportions based on the grand total
are computed for each dependent variable specified. Standard errors are computed for all estimators
and a test statistic for the hypothesis of proportionality is obtained.

[2] Regression Analysis refers to the computation of weighted least squares regression coefficients, and
an estimated variance-covariance matrix which takes into account the sample design. Multiple degrees
of freedom F-tests for sets of coefficients and the usual test statistics are available, as is the option
of obtaining residuals and predicted values.
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TABLE 4C(2). Main features of PC-CARP.
(Source: the distributor)

Versions of PC CARP

Machine

IBM PC/AT
w i t h Math Co-Processor

Form of
PC CARP

1 H i g h density
diskette

Required
Memory

450K

IBM Personal Computer
with Math Co-Processor

IBM PC/XT
with Math Go-Processor

2 Double densi ty
diskettes

2 Double density
diskettes

Analysis capabilities of PC CARP
Analysis Coeff.

of var

Population Analyses

Total Estimation x

Ratio Estimation x

Difference of Ratios

Stratum Analyses

Totals

Means

Proportions

Subpopulation Analyses

Totals

Means

Proportions

Ratios

other Analyses

Two-Uay Table

Regression

Univariate

Cov.
matrix

Design
effect

410K

A10K

Cornents

50 variables maximum

50 variables maximum
without covariances,
15 with covariances

15 variables maximum

50 variables maximum

50 variables maximum

50 variables maximum

Crossed classif.
Multiple variables

Crossed classif.
Multiple variables

Crossed classif.
Multiple variables

Crossed classif.
Multiple variables

50 cells maximum,
proportionality test

50 variables maximum
Multiple d.f. tests
Y-hat, residuals

Multiple variables,
empirical CDF, quant i les



4 Computing Sampling Errors in Practice

[3] Univariate Analysis provides statistics describing the distribution of a variable over a specified
subpopulation. Estimates of the mean, variance, distribution function, quantiles and interquantile
range are produced.

[4] Some additional features include the following: incorporation of the finite population correction
(assuming uniform or averaged sampling rates within strata); estimation of quantiles and their
standard errors; cstimaiion of a multivariate logistic model using an iterative least squares algorithm;
and handling of post-stratification where the estimates have been adjusted to match known
population control totals.

CLUSTERS: A Package Program for the Computation of Sampling Errors for Clustered Samples. Version 3

A description of the program is available in Verma and Pearce (1986).

In terms of computer requirements, CLUSTERS is similar to PC CARP. It is available on IBM PC and compatibles
with math co-processor, is FORTRAN based, and uses the linearised method for variance estimation. The program
was originally developed in the mid-Seventies and over the years has been made available freely on request to
statistical organisations and individual researchers in many developing and developed countries. The new Version 3
was developed in 1985-86 to make the program more flexible and easier to use in certain respects, and above all, to
make it available on personal computers. Among other uses, the program was used on a large scale to compute
sampling errors for all surveys in developing countries conducted under the World Fertility Survey programme
(1972-1984); and more recently it has been used systematically in developing country surveys conducted under the
Demographic and Health Surveys programme. The package has also been used by countries for computing sampling
errors for labour force and other household surveys.

The program is more limited than PC CARP in the range of analyses performed. Instead, it is focused on the primary
task of large-scale compulation of sampling errors for diverse statistics over various subclasses and domains of the
sample. It includes flexible facilities for specification of parameters of the sample design relevant to the computations,
and also provides a useful set of receding facilities for defining statistics and subclasses for which sampling errors are
to be computed. It handles missing values by appropriately excluding them from the computations. Several features
of the program which make it particularly suited for large scale computation of sampling errors in descriptive surveys
with complex designs are noted in Table 4C.(3).
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TABLE 4C.(3). Some useful features of clusters.
(Source: Verma, 1982)

1. Sample structure. The program computes sampling errors taking into account the actual sample design, in
particular clustering, stratification and weighting of the sample. There are no specific restrictions on the
design, except for the basic ones for the linearisation method, namely at least two independent primary
selections per stratum with replacement. (A limitation of the program is that the finite population correction
is always disregarded.) The program includes flexible facilities for specifying computing strata and primary
units, as well as specifying sample weights.

2. Data input and transforation. The program is designed to minimise the need to restructure or modify the data
prior to their use in the program. It has been extended to handle hierarchical data files which may contain
records for units at different levels such as households and individual persons. Data files may optionally be
described by an associated file called the "dictionary1; the program accesses the dictionary for information
on the variables. It is often necessary to recode input data before the required statistics can be computed.
For this purpose the program includes a set of useful recoding facilities which can define new variables by
combining or transforming one or more existing variables, exclude cases not belonging to specified categories
(subclasses), identify and deal with missing values, etc.

3. Handling diverse variables and subclasses. The program allows the specification of a set of variables and
a set of subclasses and then automatically proceeds to compute estimates and sampling errors for the whole
"variable by subclass1 matrix, ie for each variable over the full set of subclasses specified. This is
convenient because in survey analysis often the same system of classification is relevant to all (or most)
survey variables. This feature reduces the work required in specification of the computations to be performed.
In computing sampling errors for a subclass, the program also computes sampling error for the dichotomous
variable defining the subclass, treating it as a characteristic distributed over the sample.

4. Subclass differences. The sample subclasses for which sampling errors are to be computed can be specified
in pairs. In that case CLUSTERS automatically calculates the difference and its standard error for each
subclass pair. A given subclass may, if desired, appear in more than one pair; moreover the subclasses in a
pair need not necessarily be non-overlapping or exhaustive.

5. Separate results for geographical domains. The entire set of calculations for variables over sample
subclasses and for differences between subclass pairs can be repeated for separate geographical domains in to
which the survey universe may have been divided. This repetition is extremely straightforward from the user's
point of view and does not involve much additional computer time. One restriction regarding this facility in
CLUSTERS is that the geographical regions must be non-over lapping and the sample must be selected independently
within each region.

6. Derived statistics. In addition to standard errors, the program produces related statistics such as
relative error, 95% confidence intervals, standard deviation, coefficient of variation, design effect (deft)
and rate of homogeneity (roh).

7. Type of estimators. The program is confined to the computation of errors for 'descriptive1 statistics
including proportions, percentages means and ratios of pairs of substantive variables. Differences of ratios
of the same characteristics defined over different subclasses are handled. These cover most types of statistics
commonly encountered in large-scale household surveys.

The main limitations of the program are that (i) it is not designed to provide directly information on variance
components; (ii) it does not handle more complex statistics than ratios and differences of ratios, statistics
such as double ratios or regressions which may be of interest in some surveys; (iii) it has no provision for
more sophisticated analyses, other than the basic task of efficiently computing sampling errors for descriptive
statistics on a large scale in multisubject surveys; and (iv) an unnecessary but inconvenient limitation of the
program in the present form is that it does not output sampling errors of simple aggregates.
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DECOMPOSITION OF THE TOTAL VARIANCE

5.1 INTRODUCTION

The concern in the discussion of the variance estimation procedures in Part I has been with estimating the total
sampling variance. This concern is correct because in practical survey work the first priority must be given to
computing overall variance of the diverse estimates produced. This information is essential for proper interpretation
and use of sample survey results. Analysis of the total variance into components is a more complex and demanding
task. Neverlhelcss, it is necessary for survey design work to isolate, to the extent possible, components of the overall
variance which can be related to important features of the design and to various stages of selection and estimation.

Detailed consideration of the complex topic of variance components is beyond the scope of this Technical Study. This
chapter considers the following selected aspects, which are important in the analysis and use of the information on
sampling errors:

[1] Decomposition of the total variance of a survey estimator into the overall effect of the design (as
measured by the design cffecl. deft2), and what the variance would have been with a simple random
sample of elements of the same size.

[2] Decomposition of the design effect into the contribution of haphazard or random weights, and the
overall effect of other complexities in the design.

[3] Identification of the effect of certain steps in the estimation procedure (post-stratification, ratio
adjustments, composite estimation etc) on the variance of the resulting statistics; in particular, of the
effect of variability of external weights, when the actual weighting factors applied depend on the results
obtained in the particular sample.



5 Decomposition of the Toial Variance

[4] Assessment of at least the approximate contribution of various sampling stages and the effect of
stratification at various levels.

[5] And a more formal analysis of the components of total variance by sampling stage in multistage designs.

In the above, [1] and [2] are no doubt the most important tasks as concerns practical survey work. Fortunately they
are also the ones most easily accomplished. Simple procedures are available for estimating the equivalent SRS
variance, from which deft can be computed given the variance of the actual sample. Simple and robust procedures
are also available for separating out in the design effect the contribution of random (but fixed) weights. Indeed, design
effects are routinely produced by most general purpose variance estimation programs such as CLUSTERS and
PC CARP described in Chapter 4.

Objective [4] can also be accomplished by using procedures similar to those for computing the overall design effect,
[1] - though here the procedures tend to be somewhat more approximate, more specific to details of the sample
structure, and more demanding in terms of the computational work involved. The linearisation method of variance
estimation described in Chapter 2 is perhaps the most suited for this type of analysis; this may also be the case for
objective [5].

Objective [3] can be important when the estimation procedures involved are complex and demanding in terms of the
time and effort required for their application. Generally, the repeated replication procedures described in Chapter 3
are better suited for this type of analysis.

Decomposition of the total variance by sampling stages, [5], is usually more difficult and complex. There are several
problems in estimating variance components by sampling stage. The decomposition of overall variance into
components involves complex procedures and greatly increased computational work, and often the results obtained
are numerically unstable. Also, by their very nature, the computational procedures have to be more specific to detailed
features of the sample design, making it difficult lo establish common procedures applicable to different designs
encountered in practice.

5.2 THE DESIGN EFFECT, AND VARIANCE IN AN EQUIVALENT SRS

The standard error, se(y), for a statistic (say a mean, y ) estimated from a complex sample is factored into two

parts each of which is discussed below:

sr(y), the standard error which would have been obtained in a simple random sample of the same size;

deft, the design effect, defined as the ratio of the standard error for the actual design, to thai for a

simple random sample of the same size:

deft = (5.1)
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5.2 The Design Effect, and Variance in an Equivalen! SRS

5.2.1 THE DESIGN EFFECT

The design effect (defl) is a summary measure of the effect of departures of the actual sample design from simple
random sampling of elements. It is a comprehensive measure which attempts to summarise the effect of various
complexities in the design, especially those due to clustering, stratification and weighting. It may also incorporate the
effects of ratio or regression estimation, double sampling, variable sampling rates, etc. In practical survey work,
departures from simple random sampling are introduced to reduce the cost of and improve control over field
operations. These benefits have to be weighed against the loss in sampling efficiency measured by defl. Deft is one
of the most commonly used and useful measuresof efficiency of the sampling design; many samplers include it as a
routine item in ihc output of variance computation. Examples of défis from a number of developing countries were
given in Il lustration 4A.

Since deft itself is a measure incorporating the effect of various features of the design and estimation procedure, it
may be decomposed further into components reflecting specific aspects of the design, such as the effect of weighting,
estimation procedures, cluster sizes and other features of the sample structure. These issues will be considered in the
following sections and in Chapter 6.

5.2.2 VARIANCE IN A SRS OF THE SAME SIZE; POPULATION VARIANCE

To compute the design effect, it is necessary to estimate

[1] the variance under the actual design. Various practical procedures for this have been described in Part I.

[2] the variance, for a given survey estimator, which would pertain in a simple random sample of the same
size.

How can [2] be accomplished, when the actual observations we have available are from the actual complex design,
rather than from a simple random sample of elements? Here is a point of great practical relevance: In most practical
samples the equivalent SRS variance can be estimated well and simply from the sample observations. This is based
on a remarkable result of sampling theory that, from the results of a given complex sample, we can estimate what the
sampling error would have been in the hypothetical situation if certain complexities had not been present in the actual
design. The procedure is simply to apply the computational method by assuming that the complexities concerned were
not present. The sampling error for an equivalent simple random sample of the same size - and hence the overall
design effect - can be estimated from the complex sample by applying to it the ordinary SRS variance estimation
formulae (see Technical Note at the end of this section for some fur ther discussion of the procedures). While this
is the clearest and most common application of the procedure, the idea can be extended to explore the effect of
particular features of the design; some possibilities are described in Section 5.5 and Illustrations 5C and D.
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5 Decomposition of Ihe Toial Variance

Some expressions for SRS Variance

We will first consider the estimation of equivalent SRS variance for a complex, but self-weighting ('epsem') sample.

[1] Means and Proportions.

Assuming a simple random sample of size n with replacement, we have the well-known expression for the variance
of a sample mean:

2

where the subscript 'o' is used to indicate simple random sampling, and

/i
. S0^2 (5.3)

n-l

estimates the variance between individual elements in the population

^'"-io2
 (5.4)

s2 = £
N-l

S2 is called the population variance. Its square root, S (or its estimate s), is the standard deviation, as distinguished
from standard error, which measures the variability of the sample estimator rather than of individual elements in the
population. S2 does not depend on the structure of the sample, but only on characteristics of elements in the
population. As mentioned above, in most practical samples, it can be estimated well and simply from the sample
observations irrespective of the complexity of the design, except for the effect of sample weights, as noted below.

(For simplicity, it is assumed in this section tha t the finite population correction is inapplicable, negligible, or can
be appropriately introduced in the expressions given here.)

For a proportion p, the expression for s2 takes the well-known form

) - pq;
n-l

(5.5)
P^E. .£3.

n-l n
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5.2 The Design Effecl, and Variance in an Equivalent SRS

[2] Ratios

The concept of population variance can be extended to other, more complex types of estimators as well, in so far as
it can be expressed in a form such as (5.4) involving quantities (like y^ defined at the level of individual elements (j).
For example, for a ratio R = Y/X, we have

where Zj is an auxiliary variable defined at the level of individual units as

Zy = (Yj - R.Xj/X

With r as the estimate of R from a sample of size n, S2 is estimated from the sample values as

s2 = £z;V(n-l), with Zj = (yrr.Jtp/f (5-6)

giving the SRS variance with ratio estimate as var(r)0 = s2/n, as before. In the above,

X = XIN ; I = x/n

are average values of the denominator in the ralio, for the total population and the sample respectively.

[3] Differences between Samples or Subclasses

Extension to differences between non-overlapping populations sampled independently is straightforward, bu t
somewhat more complex in the presence of overlaps. This is discussed below in terms of differences of proportions.

If the proportions (p and p') between two mutual ly exclusive groups (of size n and n' respectively) are being
compared, variance of the difference is simply the sum of their individual variances

/ /x .P-(I-P) P'-(!-P')var(p-p) = — — — + !—± — t—1-
° n-l n'-\

An example of the above is the comparison of proportions of poor in two (mutually exclusive) socio-economic groups.
Sometimes the interest is in comparing proportions according to two characteristics in the same base population. I f
the two proportions (numerators) are mutual ly exclusive - for instance the proportion of voters voting for parly A,
and the proportion voting for party A' - then:
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5 Decomposition of the Toial Variance

where n is the size of SRS drawn from the common base population to estimate the proportions. This follows from
the observation that

var(p-ph)a = varip) + varip1) - 2.cav(pj)1)

and for mutually exclusive proportions with a common base, cov(p,p') = -p.pV(n-l).

When the two proportions overlap, the above is modified to

var(p-p<) = [ ( P - 2 - " - -
0 n-1

where p" is the overlap between proportions p and p'.

Weighted Samples

When the actual sample observations have been weighted, the expressions for estimating the variance (without the
effect of weights on it) for a simple random sample of the same size have to be modified with the weights. With w]

as the weights for individual elements (j), we have for example for a mean

- = Ey'V;. j2 = n E;*/^2
 (5.7)

'

For a proportion p, the above expression applies, with y¡ defined appropriately as a dichotomous variable p, (=0 or 1):

Note that the form of s2 for a proportion is identical to that for the unweighted case; the only difference is that p
itself is estimated with the weights.

More generally, for a ratio we have

v* v^ ^
(5.8)

with
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5.2 The Design Effect, and Variance in an Equivalent SRS

Expressions of the above form for s2 can also be applied to other more complex statistics with z, appropriately defined.
This extension is based on the linearisation procedure described in Chapter 2.

A most important point is that though weights appear in the above expressions for s2, the quantity it estimates is the
(unweighted) population value S2, and hence the sampling variance estimated by s:/n still refers to a selfweighting
simple random sample of the same size (n) as the actual sample. The effect of weighting is of course incorporated
into the variance for the actual design computed using the procedures described in Chapters 2 and 3, and hence into
the design effect defined from the above. Separation of the effect of weighting from the overall design effect is
discussed in Section 5.3.

A Note on Terminology

By convention, the term 'design effect' is used both for the ratio of actual to SRS variances, and for its square-root,
ie the ratio of the standard errors. To avoid confusion where necessary, we use 'deft2' when the reference is to the
ratio of variances, and 'deft' for the ratio of standard errors. 'Deff has also been used in place of deft2, though now
Ihis usage is less common; however, a subtle dislinclion has someiimes been drawn between the two in the sense lhal
the denominator in the case of deff does not include the finite population correction (fpc), while that in deff2 does.
The numerator (the variance of the actual sample) in either case is meant to include the fpc appropriately.

Some authors have preferred to reserve the term 'design effect' for the ratio of variances, and have used the term
'design factor' to refer to the ratio of standard errors.

5.2.3 TECHNICAL NOTE ON ESTIMATING SRS VARIANCE FROM A COMPLEX DESIGN

The objective of this note is to give a clearer understanding of the procedure described above for estimating the SRS
variance from data obtained from a complex sample. Us basis follows from what has been called the 'argument of
symmetry' (Cochran, 1973; Sec. 2.3). Consider for example a self-weighting sample of any design. Since each clement
in the population has the same chance of being selected into any sample, every unit in the population appears exactly
the same number of times when the collectivity of all possible samples is considered. This implies that the mean per
element of all possible samples (which by definition is the expected value of the sample estimator) is the same as the
mean per element in the population, giving the well-known result that the sample mean provides an unbiased estimate
of the population mean:

The point is that the above applies not only to a particular variable, but to any variables defined in terms of individual
values, such as z, = yj( yj2, yrXj, etc, but without involving cross-products of values for different elements. (The
argument of symmetry does not apply to cross-products, because complexity of the design affects the probability with
which any particular combination of elements appears in the samples.) The above also applies to quantities like
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5 Decomposition of Ihe Toial Variance

(y;. - Y)2 or (yj - /Lt^)2, where Y and R are constant (population) parameters. With a reasonably large sample

size, it also applies with generally only a slight approximation to quantities like fy - y)2 or fy - rjcp2, with the

population parameters replaced by their sample values. On this basis s2 estimates S2, ie E(s2) = S2, irrespective of the
complexity of the design. It can be established that the actual relationship is

(5.9)
n-1 N

in which the second term on the right is of the order of (1/n) compared to the first, ie usually negligible by
comparison. For a simple random sample without replacement, we have the equality E(s2)=S2 since

Var(y)=(l -—).—. In a complex design, s2 slightly underestimates S2 in so far as the complexity increases the negative

variance term on the right hand side.

The argument is easily extended to the general case of a complex sample when the individual elements are weighted
inversely proportional to their respective probabilities of selection. The argument of symmetry goes as follows. If Pj
is the probability of selection of an element j, then the number of times it appears when all possible samples are
considered is proportional to pr Now if the contribution of each element to all possible samples (ie, to the expected
value) is divided by its PJ ( ic, multiplied by its inverse, Wj), the result is that the "effective" number of appearances
when all possible samples arc considered is the same for all elements in the population. This means that any functions
of individual values of the type noted above, which involve individual values but not cross-products across different
elements, is weighted by Wj to estimate the corresponding population parameter. From this expressions like (5.7) and
(5.8) follow.

5.3 THE EFFECT OF UNEQUAL WEIGHTS

In many surveys the objective is to produce estimates at various levels of aggregation such as at the national as well
as subnational levels. Comparisons among subnational estimates are also required. The different objectives results
in conflicts requiring compromises in sample allocation. For any given objective, the compromise allocation essentially
represents "random" weighting, the effect of which is to inflate the variance for that objective. The important thing
is that unequal weights tend to affect (inflate) the variance of all estimates for different variables over different
subclasses in a rather uniform way, independently of the structure of the sample except for weighting itself. Herein
lies the practical utility of isolating this effect. Its magnitude has been expressed in very simple equivalent forms (Kish
1965, p427, and 1989, p!83; the original author uses the symbol (1+L) for the quantity denoted by Dw

2 here):
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5.3 The Effect of Unequal Weighis

Dw is the factor by which standard error is inflated due to random weighting. In the above, wh are the weights, uniform
for the nh units in stratum h; and Wh are the relative sizes of the strata in the population. The three forms in the
equation are equivalent since weights wb are generally taken to be inversely proportional to the sampling rates,
fh = n,yNh = nh/(N.Wh).

The above can also be written in terms of the coefficient of variation of the weights as

where

n.w

A more precise expression for the loss factor estimated for a ratio r=y/x and with weights varying generally at the
level of individual units is

where

Illustration 5A demonstrates the computation of Dw, the design effect due to weighting using (5.10). Illustration 6F
gives several examples showing that this effect tends to be similar for diverse variables and subclasses.
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ILLUSTRATION 5A THE EFFECT OF ARBITRARY WEIGHTS ON VARIANCE

Table 5A(1) shows the relative weights applied in samples from some developing countries. (The example is taken
from the Demographic and Health Surveys programme.) Each sample was essentially self-weigh ting within each of
a number of major geographical domains in the country, but weighted across the domains. The table shows the sample
size (nh) and the relative weight (wh) for each domain. (For convenience, the weights have been scaled such that the
average value is 1.0.) The last two columns show the increase in the sampling error due to weighting for estimates
produced at the national level, computed on the basis of equation (5.10). These factors apply essentially unchanged
to all variables estimated at the national level, as well as to estimates over cross-classes which are distributed across
the geographical domains. For estimates produced at the domain level, there is of course no effect due to weighting
because the samples are self-weighting within domains.

TABLE 5A(1) Computing the effect of arbitrary weights on variance.
(Source: Aliaga and Verma, 1991)

weighting domain
1 2 3 - 4 5 6 7

UGANDA
n,, 964 128 689 1108 132 1289 420
Hh 0.56 1.83 1.68 0.94 1.83 0.97 0.62

Loss factor
Dw2 Dw

1.16 1.08

BOTSWANA
nh 2258 2110
wh 0.58 1.45

BRAZIL
nh 749 769 847 1029 1794 709

"h 0.82 1.69 1.35 0.89 0.88 0.48

EGYPT
n,, 272 246 116 279 286 8621
wh 0.27 0.22 0.35 0.56 0.55 1.08

1.19

DOMINICAN REPUBLIC
nh 1336 631 1302 891 926 758 1016 789 1.35
Hh 2.09 0.71 1.39 0.91 0.43 0.66 0.55 0.45

1.12

1.05

1.09

1.16

1.06

1.03
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5.3 The ECfecl of Unequal Weighls

Table 5A.(2) shows the effect of weights on the overall (total sample) défis. The first panel shows the actual defts,
including the effect of weighting. The values have been averaged over groups of subslanlively similar variables. The
variables and the groups were defined in Table 4A.(3) in the previous chapter. Deft values for individual variables
was shown in Table 4A.(4). As explained in Chapter 6, such averaging is often necessary and useful.

The second panel of the table shows what the total sample design effects would have been in the absence of weighting
which inflates the variance; that is, the figures shown are the actual deft values from the first panel, divided by the
loss factor Dw for the design from Table 5A.(1). For certain countries the values in the two panels are the same
because the samples involved were self-weighting; these are the countries shown in this table, but not in 5A.(1).

TABLE 5A_(2). Examples of the effect of weighting on dcfl values.

(i) Deft values averaged over groups of variables

country
GHANA UGANDA DOMINICAN REP BRAZIL ECUADOR KENYA

ZIMBABWE BOTSWANA PERU EGYPT SENEGAL THAILAND
var

group
1
2
3
4
5
6

all

1

1.15
1.33
1.57
1.84
1.31
1.56
1.41

2

1.04
1.19
1.22

.1.20
1.09
1.58
1.18

3

1.19
1.23
1.14
1.52
1.17
1.69
1.29

4

1.25
1.51
1.34
1.87
1.25
1.64
1.48

5

1.28
1.31
1.21
1.27
1.10
1.86
1.30

6

1.12
1.12
1.20
1.34
1.07
1.40
1.18

7

1.26

1.31
1.24
1.15
2.28
1.29

B

1.40
1.51
1.42
1.91
1.23
2.76
1.67

9

1.26
1.64
1.08
1.65
1.14
1.69
1.37

10

1.32
1.23
1.34
1.61
1.16
2.02
1.39

11 12

1.46 1.72
1.35 1.65
1.59 1.71
2.00 1.82
1.30 1.37
2.01 2.10
1.55 1.69

1.00 1.00 1.08 1.09 1.16 1.00 1.06 1.03 1.00 1.00 1.28 1.22

(ii) Deft values after renewing the effect of arbitrary weights

1
2
3
4
5
6

all

1.15
1.33
1.57
1.84
1.31
1.56
1.41

1.04
1.19
1.22
1.20
1.09
1.58
1.18

.10

.15

.06

.41

.08

.57
.20

1.15
1.39
1.23
1.71
1.15
1.50
1.36

1.10
1.13
1.05
1.10
0.94

1.60
1.12

1.12
1.12
1.20
1.34
1.07
1.40
1.18

1.19

1.24
1.17
1.08
2.16
1.21

1.36
1.47
1.38
1.87
1.20
2.69
1.63

1.26
1.64
1.08
1.65
',.14
1.69
1.37

1.32
1.23
1.34
1.61
1.16
2.02
1.39

1.15
1.06
1.24
1.57
1.02
1.58
1.22

1.41
1.36
1.40
1.49
1.13
1.73
1.39
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5 Decomposition of the Tolal Variance

5.4 THE EFFECT OF VARIABILITY IN THE ESTIMATION WEIGHTS

The issue of variable weights should be distinguished from essentially random but fixed weights considered in the
preceding section.

Sample data may be weighted for various reasons in estimating the population parameters. Apart from differences
in selection probabilities, weighting may be introduced for nonresponse, post-stratification or ratio adjustments. While
usually the main objective of weighting is to control bias, weights which randomly depend on the particular units
which happen to be selected may also affect the variance of the estimates. For instance, post-stratification or ratio
weights often reduce the variance while nonresponsc adjustment weights tend to inflate it. The effect of weights
treated as constants is automatically incorporated into the variance estimation procedures described in Part I.
However the treatment of weights variability in variance eslimation requires special considerations.

The method of linearisation is difficult to adapt to take into account the contribution of variable weights. The
repeated replication methods are more suited for the purpose. In the production of replicated estimates, the weights
may be introduced in one of the following two forms:

[1] a common set of weights computed from the full sample and applied to all the replications; or

[2] weights computed and applied separately for each replication, using a common procedure.

Procedure [2] lakes into account the effect of weight variability, but [1] docs not. Their comparison will show the
importance of this effect. Ideally [2] should be used in variance estimation, but it can be much more costly in terms
of the computations involved. When the effect of weight variability is not important, the more economical procedure
[1J will suffice. In that case, of course, the linearisalion method can also be used in place of repeated replication,
unless the latter is preferred in view of ihe complexity of the statistics involved. In practice it is also possible to use
a combination of [1] and [2]: using procedure [2] for steps in the estimation procedure where the contribution of
weight variability is imporlanl and/or can be handled without too much additional computational work, and using [1]
in the remaining steps. Several examples of the approach are given in ihe following illustration.

ILLUSTRATION 5B MAGNITUDE OF THE EFFECT OF VARIABLE WEIGHTS

Several investigations have shown that in many situations the effect of weight variability on variance is not important.
For example Kish and Frankel (1970) computed variances of several types of statistics using the BRR method. Some
results are shown in Table 5B.(1). Column (4) in the lable shows the factor by which the standard error is changed
when the effect of weight variability is taken into account. The factors are mostly close to 1.0, indicating a mere 2-3%
increase in standard error or 5-6% increase in variance due to weight variability. Similarly small effects have been
reported by Rust (1987), as shown in Table 5B.(2). However, the same author also reports a case with striking
reduction in the estimated variance when weight variability was taken into account by computing the weights
separately for each replication, using in this example the BRR method. Some resulls along wilh a brief commentary
are shown in Table 5B.(3). The figures for the linearisation method in the table do not take this effect into account.
The differences between the two estimates are marked. Such strong effects of weight variability may be present when
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5.4 The Effect of Variability in the Estimation Weights

ihe post-siratification variables are highly correlated with the substantive variables being estimated, so that the use
of 'correct' weights in each replication makes a significant difference to the precision of the estimates produced.

TABLE SB.(l). An example of negligibly small effect of the variability in weights.
(Source: Kish and Frankel, 1970)

AVERAGE VALUES OF VDEFF FOR SEVERAL STATISTICS
FROM 76 REGRESS/ONS, WITH DIFFERENT PREDICTANDS

FROM SAME 3 PREDICTORS

Statistic (D- (4)
2)-(3)

Ratio means 18
Simple correlation» 51
Partial correlations 48
Multiple R 1C
Regression coefficients 48

1.7998
1.2G16
1.3995
1.4053
1.2948

.7549

.2802

.3487

.4217
1.2CC8

1.0250
0.9855
1.0377
1.0307
1.0221

' (1) = number of different ataiulies averaged in Columna (2) and (3).
b (2) ^average vulues of \/deO with correct weighting system.
° (3) =averago values of \/defT with uppruxinuite weighting system.
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5 Decomposition of ihe Toial Variance

TABLE 5B.(2). Another example of small effect on variances of the variability in sample weights.
(Source: Rust, 1987)

BRR estimates of coefficients of variation for the Title IV Quality Control Study - Pell
Grant Awards

Parameter

Total absolute error

Total overpayment

Mean error per
student with error

Proportion with
error

Subgroup

All students
Indep. students
Dep. students
Pell Grant only

All students
Indep. students
Dep. students
Pell Grant only

All students
Indep students
Dep. students
Pell Grant only

. All students
Indep. students
Dep. students
Pell Grant only

Incorporating
sampling
v anadón

in weights

.107

.289

.082

.235

.060

.116

.059

.137

.110

.290

.080

.214

.030

.046

.034

.056

Ignoring
sampling
varia don

in weights

.117

.280

.094

.237

.073

.122

.070

.146

.110

.277

.080

.210

.029

.047

.033

.055
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SA The Effecl of Variability in Ihe Eslimaiion Weighls

TABLE 5B.(3). An example of large effect on variances of the variability in sample weights.
(Source: Rust, 1987)

Comparison of BRR and "simple" linearization estimates of design effect for Hispanic
HANES (from Lago et al. (1987)).

Subgroup

All persons

All males

All females

Male 45-54

Female 25-34

Statistic

Mean weight

BRR

0.64

0.47

0.56

0.60

0.63

Linearization

2.31

1.38

1.93

0.59

0.60

Mean height

BRR

1.20

0.58

1.01

1.66

2.78

Linean zation

3.59

2.20

3.03

1.36

2.78

Mean cholesterol

BRR

0.65

0.96

0.63

1.68

1.16

Linearization

1.49

1.14

1.03

1.66

1.16

As part of a broader study, a similar investigation has been undertaken for estimates for
the Mexican American component of the Hispanic Health and Nutrition Examination Survey
(HHANES) conducted for the U.S. National Center for Health Statistics (Lago et al. (1987)).
Variance estimates using BRR, incorporating sampling variation in poststratification weights,
were compared with those obtained from linearization, with the effect of poststratification on
variance ignored. Poststrata were formed on the basis of age and sex. Little difference was found
for most parameters, but for three statistics, mean weight, mean height and mean cholesterol level,
the estimated design effects from linearization were several fold those from BRR for whole
population estimates (see Table ). These variables (weight, height and level of cholesterol) are
highly correlated with age and sex, the poststratification variables, so that the use of
post stratification gave rise to considerable reduction in sampling variance. In failing to reflect
this, the method of linearization used gave gross overestimates of sampling error. The table
shows that the differences between the two methods disappear for estimates for specific age-sex
cells, where the use of poststratification has no effect on the precision of estimation.
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5 Decomposition of Ihe Total Variance

5.5 EXPLORING THE EFFECT OF SAMPLING STAGES AND STRATIFICATION

While accurate computation of variance components by stages in a multistage design can be complex (as considered
in the next section), the general methods described in Section 5.2 can be adapted to yield reasonable approximations
in many situations for the effect of certain features of the design, such as that of one or more of the highest stages
of sampling or that of stratification at various levels.

This approach is based on the result of sampling theory (noted in Sec 5.2.3) that, from the observations from a given
complex sample, we can estimate what the sampling error would have been in the hypothetical situation with some
complexities of the design removed. For example to investigate the effect of the first stage in a multi-stage design,
the procedure is to apply the computational method by assuming that the highest stage concerned was not present,
that is, as if the second stage units in the sample had been selected directly as the PSUs. Similarly, we can investigate
the combined effect of the two highest stages by taking the third stage units as the PSUs for the computation of
sampling errors. In the extreme case, all stages except the ultimate (as well as other complexities of :he design) are
assumed absent to estimate the overall design effect, as done in Sec. 5.2.

Consider, for instance, a design with three area stages (say counties, communes, villages) followed by sampling of
households. By regarding this as a single stage sample of households, we estimate the variance (v0) of a SRS of the
same size. Variance (Vj) computed by considering villages as the PSUs gives the relative increase (v,/v0) due to the
clustering of sample households into villages. Similarly, computation with communes treated as the PSUs gives
variance v,, and with counties as the PSUs gives variance v3 of the actual design. The ratio v,/v, is the effect of
clustering sample villages into communes, and v_,/v, is the effect of the clustering of the communes into counties.

A similar procedure can be used to investigate the effectiveness of stratification in improving the efficiency of the
design. Variances computed for the actual stratified design can be compared with those computed by disregarding
stratification. Indeed, the two ideas can be applied in combination: the effect of stratification at various levels (stages)
can be investigated by comparing the compulations, with and without stratification taken into account, for the sample
with the actual number of stages, or with one or more of the highest stages removed. The linearisation method of
Section 2.2 is usually the most suited for such analysis. Examples of application of these procedures are given in
Illustration 5C.

ILLUSTRATION 5C SOME EXAMPLES OF THE EFFECTS OF SAMPLING
STAGES AND STRATIFICATION.

The Effect of Sampling Stages

Table 5C.(1) provides some numerical results on variance components from three samples used in national fert i l i ty
surveys in Thailand, Colombia and Nepal (Verma et al, 1980).
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5.5 Exploring the Efïeci of Sampling Stages and SiraiiCicalion

In Thailand (Rural), the sample consisted of a design with four stages. Changwat (provinces), which arc large units
averaging over half a million in population, served as the PSUs; Amphoe (communes) as the second stage uni ts
(SSUs); villages as the third stage units; and households as the ultimate units of sampling. (The total number of units
selected at the four stages were 37, 78, 234 and 324U respectively.) Generally, area units at various stages were selected
with systematic PPS after geographical and administrative stratification, and the final sample of households and
women was approximately self-weighting. To investigate the effect of the three area stages, four sets of compulations
were made for each of a large number of variables over the total sample and various subclasses. The variables
concerned fertility and associated factors such as marriage and contraception.

In the table, the results shown are averaged over groups of similar variables. For each statistic, the four variances
computed were: v0 for an equivalent simple random sample of the same size; v, for a design with one area siage
(villages as the PSUs); v2 for a design with two area stages (communes as PSUs and villages as SSUs); and v, for the
actual design with three area stages. The quantities SI, S2 and S3 shown in the table are square-roots of the ratios
VA0, v,/v0 and v,/v0 respectively. Here SI is the design effect (deft) for the hypothetical design with one area stage
(villages as PSUs); S2 stands for deft for the design with two area stages (communes as PSUs), and S3 for défi lor
the actual design with three area stages. Thus due to the clustering of households and women within villages, the
standard error is inflated by the factor SI; it is further inflated by the factor S2/S1 due to the clustering of villages
into communes, and by S3/S2 due to the clustering of communes into provinces. The relative contribution of stages
varied by nature of the variable; also the increase due to higher stages was generally smaller for subclasses than for
the total sample.

The three stage sample of Colombia (Rural) consisted of a relatively small number (35) of rather large PSUs, from
each of which a large number of small units (clusters) were selected as the SSUs, and finally an average of only 3.2
women per cluster were selected at the last stage. Results are shown for the same set of variables as for Thailand and
Nepal. As a result of the above design, most of the increase in standard error over SRS comes from the first siage,
ie clustering of SSUs into sample PSUs: the overall average of S2/S1 for all variables over the total sample is 1.6,
indicating an increase in variance by a factor (S2/S1)2 of over 2.5. The impact was less marked when estimates over
subclasses were considered.

The sample for Nepal was more complicated and more heavily clustered due to difficult travel conditions in the
country. Only 7 blocks were selected in the urban sector in a single stage. In the rural sector, which comprised 96%
of the total sample, 33 districts (PSUs) were selected followed by 2 panchayals per sample district. From 66 sample
panchayals, usually only one but sometimes two and occasionally three wards were selected, resulting in a sample of
95 rural wards. The results in Table 5C.(1) were computed by regarding the design as a two stage sample, with 4Ü
PSUs (7 urban blocks and 33 rural districts) and 102 SSUs (7 urban blocks and 95 rural wards). There was no
subsampling within SSUs, from which a total of nearly 6000 women were interviewed. Hence the sample consisted
of relatively large compact clusters, ihemselves clustered into a small number of PSUs. Consequently there is a large
effect of clustering on the sampling error, wilh v^ = S,2 = 3.0 due to clustering of women within SSUs, and further
increase by a factor (S2/S1)2 = (1.36)2 = 1.85 due to clustering of the SSUs. Again, these effects were greatly reduced
for estimates for subclasses such as particular age groups, and especially for small subclasses such as women with
higher education.
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5 Decomposition of Ihe Tola! Variance

The Effectiveness of Stratification.

Slralification is a more powerful insirument for conirolling variance in multistage samples lhan in random samples
of elements. In addition to the control and flexibility in design offered by stratification, the gains in precision tend
to be greater when sampling clusters. Also the more marked the effect of clustering, often the more marked is the
proportionate gain due to stratification. To estimate the effect of stratification, a procedure similar to the above can
be followed: the actual sampling error can be compared with the (generally increased) error which would be obtained
if the units were not siratified. The lailer is computed by simply ignoring the actual stratification of the design.
Clearly, the linearisation method (Chapter 2) is the approprialc one for this purpose. It is Ihe straiificalion al Ihe
first stage ('primary slralification') which is the most important in many designs. Table 5C.(2) shows some results from
a number of national fertility surveys (Verma et al, 1980). To illustrate the effeci of slralification for designs wilh
differenl numbers of siages, and for Ihe loial sample and subclasses, the table shows the ratio of two quamiiies

Sj the slandard error compuied wilh aclual stratification for a design wilh j area stages; and

Uj the standard error computed by ignoring ihe primary siralificalion in ihe design wiih j area stages.

Cases where j shown is smaller lhan ihc aclual number of area siages in the design mean that the lowest j area stages
only were considered in the compulations. 'Primary siralificalion' always refers to the straiificalion of ihe aclual PSUs.
Thus in a design wilh 3 area siages, S3/U3 is ihe proportionate reduction in slandard error obtained by ihe
siralificalion of ihe PSUs; S2/U2 is ihe reduction in a hypothetical design wilh ihe lowest two area stages only; and
similarly S1/U1 is ihc rcduciion in a design wilh a single area stage where in compuling SI ihe firsi two stages are
ignored, and in computing Ul ihe siralificalion of ihe actual PSUs is also ignored. Generally the results show
increasing effeci of stratification with increasing number of sampling stages. These effects are less marked for
subclasses of the lype shown lhan for results over the tola! sample.

5.6 COMPONENTS OF VARIANCE BY SAMPLING STAGE

The information in the preceding illustration can also be presented in the more conveniional form of additive
components of variance attr ibuted to the various siages of sampling. Such an analysis of variance into components
is the topic of this section. As noted in Section 5.1, the decomposition of overall variance inio componenis involves
complex procedures, which need to be more specific lo deiailed features of the sample design. Often the results
obtained are numerically unstable. For these reasons, the ireatmenl in Ihis section is selective and relatively brief.

For specificity, consider the estimaiion of a ratio from a general ihree slage siraiificd design, wilh sampling wilhoul
rcplaccmeni al all stages. The objective is to decompose the overall variance V into three components by stage and
estimate these componenis from the sample.

V=Va+Vb+Vc - (^ * Vu> + VJ - Vh. (5.13)

Va is the beiween-PSU component, Vb is the componeni between SSUs within PSUs and Vc is ihe componeni
between ultimate uniis within SSUs. Each component may be decomposed into subcomponents by stratum as done

114



5.6 Components of Variance by Sampling Siage

in the second part of (5.13). Subscripts h, i, j and k are used to denote primary strata, PSUs, SSUs and USUs
respectively. Thus with w as the sample weights, the ratio of two aggregates y and x is estimated as

(5.14)

where the summation is over all k, j, i and h in turn. As described in Section 2.2, var(r) can be expressed in terms
of an auxiliary variable z defined as follows:

ZUj = ¿^i

(5.15)

The following treatment is based on Kish (1965; section 8.65). Variations in sampling rates in different parts of the
sample complicate the estimation formulae greatly. To begin with we assume that within each stratum the sampling
rales are uniform at each stage (f|U, fhb, fhc), or that values appropriately averaged to the stratum level can be used.

Define the following sample quantities

(5.16)

(5.17)

(5.18)

(5.19)

In the above, a, b and c refer lo Ihe number of units selected at the first, second and third stages respectively. H can
be shown that v estimates variance V of the ratio r, and the relationship between the above sample quantilies and
the required variance components in (5.13) is as follows.
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5 Decomposition of Ihe Tolal Variance

VARIANCE COMPONENT. ESTIMATED BY
(O Kfc: v*c

(«OK,.: ^
(¿v) K4 = Kta+Ktt+Kfc: vta

(v) K = £ r4:

The first three may be summed over h to obtain estimates Va, Vb, and Vc. Note that (iv) is a more precise expression
than the one given in equation 2.13, Section 2.2. The former takes into account ihc without-replacement character
of sampling, while the latter assumes sampling with replacement at all stages except the last. It can be seen that the
procedure in Section 2.2 amounts to estimating Vh by:

Vk '-/*

where fh is the uniform overall sampling rale in the strata:

/A = f l

In most practical situations in national surveys, the sampling rales are small and (iv) and (iv)' do not differ
significantly, the latter usually providing a slight overesiimation. The great difference between Ihe iwo is lhal (iv)'
is much simpler as it only involves quantities aggregated to the PSU level, and complexities of subsampling within
PSUs do not appear in the computational formulae. It is for this reason that (iv)' forms the basis of a general method
applicable to diverse designs. (Sec also the particular case discussed in Section 2.5.)

Instability of the sample estimates of various quantities above is a real practical problem in decomposition of
variances into stages. If at each stage, the sampling rate is uniform across all strata (or a suitable average value can
be used), then one may aggregate quantities like vhj across strata before using them to estimate the variance
components. For instance, in place of (iii) we have

(«O' K. - £av ta-(l^.(E tv t t-/,j;4v fc) (5.20)

Another point worth mentioning is that in most practical designs area units are selected with PPS, so that the
assumption of uniform sampling rates wilhin or across strata is not valid. However, it is reasonable to lake the
following uniform value in such a situalion:

effective sampling rate (at a given stage, in a particular stratum if applicable)

S(measure of size of the units selected with pps)

total measure of size of all units in the population
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DATA REDUCTION AND MODELLING

6.1 OBJECTIVES

The typically large number of estimates produced in national household surveys raised two basic issues: how to be
economical and selective in undertaking the sampling error computations for the required statistics; and how to
summarise, analyse and make the best use of the information resulting from the computations. The first issue was
considered in Chapter 4 and the second is the topic of Chapter 7. This chapter is concerned with the relationship
between the two, developing further some ideas introduced in Chapter 5. The above mentioned two issues are closely
related because both are served by exploration of the pattern of variation of sampling errors for diverse statistics. This
exploration requires data reduction and modelling of the relationships between measures of sampling error over
different statistics computed over diverse population bases. By 'data reduction' we mean removing superficial details
and variability from numeric data, appropriately amalgamating them, and computing various measures summarising
their essential features, so as to identify patterns and relationships that exist in the data. 'Modelling' means describing
and generalizing these patterns and relationships in concise, possibly analytical, forms. Data reduction and modelling
have several inter-related objectives in the context of sampling error analysis.

[1] Limiting the Volume of Computations.

As discussed in Chapter 4, generally it is not possible (nor often necessary or useful) to compute sampling errors for
each and every of the hundreds or thousands of estimates produced in a survey. However, a proper selection can be
made only on the basis of an investigation of patterns of similarities and differences in sampling errors for diverse
statistics. For instance, groups of similar variables and similar subpopulations need to be identified so that
computations, while aiming to cover the diverse groups to the maximum extent possible, can be limited within each
group without loo much loss in the information generated.



6 Dala Reduction and Modelling

[2] Summarisation

Even when sampling errors for a large number of estimates can be computed, it is not possible to present them all
in survey reports. Rather than arbitrarily taking a few statistics for publication, it is much better to analyse the data
and extract more concise measures describing their essential features for publication. Apart from reduction in volume
of the data to be published, there are also more positive reasons for averaging or summarising the information. One
important consideration is that sampling error estimates from survey data are themselves subject to variability. This
variability can be particularly large if the computations are based on samples with a small number of primary units
(Section 4.4.5). In fact, it is often preferable to use results appropriately averaged over a number of compulations,
than to rely on the precision of individual computations.

Summarisation is often desirable from the users' point of view as well. Masses of figures are less useful than simple
concise presentations from which the required information can be extracted more easily, even if there is some loss
of information in the process. While one should aim at providing the user of survey results with all the required
information on sampling errors, it is essential to do so in a way that is convenient for the user and that does not
obscure the substantive results of the survey, which are after all the primary interest.

Another consideration is that information on sampling errors is not required with the same degree of precision as
the information on substantive estimates from the survey. Indeed, too much should not be made of the precise limits
of the confidence intervals. For many purposes it is sufficient to have approximate information on the magnitude of
the error; more precise information is relevant only where it affects the interpretation of the survey results and the
conclusions which arc drawn from them. As emphasised in Chapter 1, it should be remembered that sampling error
is only one component of the total error which affects the survey results, and that often very limited information is
available on the other components.

[3] Extrapolation

Ideally the user of survey results should be able to obtain at least approximate values of the standard error for all
estimates derived from the survey, including individual cells in detailed cross-tabulation of the survey results and
differences and distributions across cells. Since actual computations cannot be made for all these estimates, it is
necessary to establish some means of extrapolation of errors from computations actually made to estimates for which
errors have not been computed. Several types of extrapolations may be involved: across diverse subclasses of the
sample for a given variable or statistic; across different types of statistics (such as totals and means for the same
variable); across different substantive variables; and even across different surveys.

1. Subclasses and differences. The number of subclasses and especially subclass differences of interest in a survey
may be extremely large. Hence one of the most important requirements is to be able to extrapolate computed
sampling errors (for each variable or statistic) from the total sample to subclasses, across subclasses, and from
subclasses to subclass differences. Ideally one would want to be able to generate sampling error for any subclass
and any comparison of subclasses in the sample. The pattern may differ by subclass type, such as classes defined
in terms of individual characteristics which are distributed over the sample areas, and geographic domains or other
aggregates of sample areas.

2. Types of statistics. Extrapolations may also be needed from one type of statistic to another for a given variable:
for example from proportions to estimates of total counts; from the more easily estimated sampling error for the
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6.1 Objectives

mean to that for the median; or from simple statistics like differences of means to more complex statistics like
regression coefficients.

3. Variables, Extrapolation across substantive variables is usually more difficult. Though less common, it is
sometimes useful and necessary. It is more difficult because different variables often have major differences in their
sampling errors. Such extrapolations are less commonly required because in many surveys the actual number of
important variables of interest is often not large - at least in comparison with the numerous subclasses and
subclass differences (Section 4.2.2). Nevertheless, many surveys involve groups of similar variables, and it can be
useful to average and/or extrapolate sampling error results within such groups.

4. Surveys or survey rounds. Finally there is the requirement of extrapolation across surveys. In a continuing or
multi-round survey, the pattern of sampling error results is usually quite stable, and it is possible as well as
desirable to pool together and extrapolate sampling error information across survey rounds. Generally, however,
extrapolation across surveys can be more dif f icul t than within surveys because of differences between survey
conditions, designs, liming, population covered, etc. Nevertheless, such extrapolation is necessary when errors for
a survey cannot be computed for some reason; in any case, it is unavoidable for the design of future surveys.

[4] Sample Design and Evaluation

Apart from indicating the reliability of existing survey estimates, an equally important objective of sampling error
information is to evaluate how a particular design has fared and lo provide data for the design of future surveys. In
continuing survey programmes, redesign and improvement of existing samples is also a major concern. In redesign
work many of the basic conditions and objectives of the survey often remain unchanged, and the focus is on
identifying any major imbalances (inefficiencies) which may be present in the existing design. For well-established
surveys, redesign may take the form of fine tuning of the existing design, which requires relatively precise information
on sampling and other errors (as well as on cost and operational aspects of the survey). For these purposes, it is
necessary to explore patterns of variation of sampling errors as related to important features of sample structure such
as clustering, stratification, sample si/e and allocation, and estimation procedures.

The identification of the relalionships of sampling error lo the sample structure also helps in meeting the other
objectives noted above, namely ihe objectives of reducing ihe volume of computations necessary, of analysis and
summarisation, and of extrapolating or imputing the information from one situation to another. For the sample design
objective it is also important, as noted in Chapter 5, to be able to decompose the total sampling error in multistage
designs into components by sampling stages and other aspects of design and estimation procedure; generally this
requirement is less important for other objectives.

Relationship Between the Objectives
While there can be differences in emphasis, the various objectives noted above have many common features and
requirements. All are helped by an improved understanding of the factors affecting the magnitude of the sampling
error, and identification of'portable' measures which behave in a stable or regular way from one situation to another.
For instance, data reduction or summarisation cannot simply be a blind exercise in empirical curve fitting. Rather,
it is greatly helped by an understanding of the underlying patterns and relationships. Semi-empirical approaches are
usually the best for this purpose: choice of models guided by theory, but with flexibility in the choice of parameters
from empirical data, based on actual computations. The same patterns and relationships are also the basis of
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6 Data Reduction and Modelling

extrapolations from one set of samples, variables and subclasses, etc, to another. Even more in-depth information on
the pattern of sampling errors and factors affecting their magnitude is required for sample design.
For various purposes it is necessary to combine somehow the results from compulations from different variables,
subclasses and samples on the basis of which patterns of variation can be established more clearly. However, it is
important to recognise that, while smoothing, pooling and extrapolation of computed sampling errors is necessary,
there are risks involved in doing that. Excessive or careless application of these procedures can hide real variations,
distort the results and mislead the user. The only guarantee against this is to base extrapolation and smoothing on
actual computations covering many variables and subclasses of different types, and always to check how well the
smoothed or modelled results fit the actual compulations. In the following sections, sampling error models of
increasing sophistication will be discussed. We begin with the form which in appearance is the simplest: a direct
relationship between the magnitude of an estimate and its standard error.

6.2 RELATIONSHIP BETWEEN THE MAGNITUDE OF AN ESTIMATE AND ITS
STANDARD ERROR

In many situations it is possible to find a simple (analytical or numerical) relationship between the size of an estimate
and its standard error which predicts the actual standard error with acceptable accuracy. The establishment of such
a relationship greatly simplifies the task of estimating and presenting sampling errors.
From any estimate already available in the survey report, the reader can obtain an approximate value for iis standard
error from the relationship between the two expressed in a graphical, tabular or algebraic form. The existence of such
relationships is of course conditional on many assumptions about the sample design and naiure of ihe variables
involved. But it is very convenient when such relationships do exist.

The possibilities and uses of establishing relationships between estimates and their sampling errors arc best
demonstrated by considering some illustrations from actual surveys. Four examples are presented below in some
detail:

A. Stability of relative errors across similar surveys or survey rounds.

B. Sampling errors of proportions or counts pertaining to different subpopulations in large-scale censuses
and surveys.

C. Various approaches to summarising sampling errors for estimated numbers of persons in different categories
in labour force and other surveys.

D. Semi-empirical or analytical relationship between the magnitude of an estimate and its sampling error.

It may be noted that, apart from Illustration 6A, the other examples all relate to estimates of proportions or counts,
rather than of means or aggregated values of subsiami%c variables. This is because the relationship between an
estimate and its standard error is usually more complicated for the latter type of statistics and not amenable to
modelling in a simple form.
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6.2 Relationship Between the Magnitude of an Estimate and its Standard Error

ILLUSTRATION 6A STABILITY OF RELATIVE ERRORS

By relative error (relative standard error, coefficient of variation) is meant the standard error of an estimate divided
by the magnitude of the estimate, often expressed as a percentage. It is found empirically that in certain circumstances
relative error is rather stable over time. This applies especially across rounds of a survey with the same or similar
content, design, sample size and other aspects of methodology. Stability of the relative error implies that factors other
than the size of the estimate itself which affect the standard error remain more or less constant, so that standard error
varies directly in proportion to the size of the estimate.

Table 6A.(1) provides an illustration from a series of livestock surveys in Yugoslavia, quoted from Zarchovich (1965).
While the estimated total may vary over the years, the relative error tends to be rather stable for a given region and
variable. To the extent that relative error can be expected to remain constant, the standard error of an estimate from
a new round can be approximated by multiplying the estimate with an averaged value of the relative error from
preceding years. Note that in the illustration this procedure has been applied separately within each region.

Table 6A(2) shows an example from similar data, which in addition examines how stable relative errors are
(Zarchovich, 1979). It shows for example that in Quarter 1, averaged over several years, around 45% of the values
of relative errors were within ± 5% of the overall average for the category; and 75% were within ± 10% of the
average; and 95% within ± 15%. A more comprehensive analysis of variation than that shown in these examples can
be carried out by decomposing the total variation into components between quarters, years, items, regions, etc. This
can help to identify the best procedures for averaging values for future use.

Stability of relative error is a very simple and convenient model. But at the same time, it involves a number of
assumptions which may or may not be valid in particular situations. Even in surveys with the same content and
procedures, changes in population characteristics, or in survey conditions, design and sample size, etc, may disturb
the stability of the relationship. In any case, continued validity of the assumed relationships should be monitored on
the basis of comparisons between new computations and predictions from previous rounds.
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TABLE 6A-(1). Relative standard enors in différent rounds of a Uve-stock survey.
(Source: Zarchovich, 1965.)

F-STIMATED TOTAL NUMBER OF PIGS AND Tilt CORRESPONDING SAMPLING
ERRORS AS OBTAINED IN A GROUP OF SELECTED DISTRICTS IN THRFF M TCESSFVE YEARS

Serial
num-

ber

1
2
3
4
5
6
7
B
9

10
11
12
n

District

Kruïtvac
Zajcïar
Krai ¡evo
Niï
Svciozarevo
Ôaïak
Pirol
Poïarcvac
Prijepolje
Prokupljc
Smcdcrevü
Tilüvo Uïite
Nov¡ Pazar

Fstimaled loial

1957 1938 1959

Tlitmsanti

49
44
24
54
59
38
13

f>7
47
30
66
9l
47
2l

117 : 159
fi 6

26
43
28

3

32
68
32
4

81
42
40
76

102
59
22

187
7

4l
80
45

5

Percentage
ïamnlmg error

1957 1958 1959

PprrrHIapt*

7 5
70
S.2
7.4
6.6
5 5
3.4
6.7

13.0
5.7
6.3
6.8

26.5

6.7
7.1
8.7
7.5
6.5
4 4
7.6
6.7

12.0
5.9
5.8
6.8

25,6

5.4
6.7
8.6
7.8
5.3
5.0
7.9
7.2

11.0
5.3
7.6
4.9

25.9

ESTIMATED TOTAL NUMBER or POULTRY AND THE CORRESPONDING SAMPLING
ERRORS AS OBTAINED IN A GROUP OF SELECTED DISTRICTS IN THREE SUCCESSIVE YEARS

Serial
num-
ber

1
2
3
4
5
6
7
8
Q

10
11
12
13

District

Kruîevac
Zajeîar
Kraljevo
Ni?
Svetozarevo
Caïak
Piroi
Poïarcvac
Prijepolje
Prokupljc
Smedercvo
Tilovo Uïice
Novi Pazar •

Estimated total

1957 1958 1959

. . . . Thousand . . .
486
.158
188
515
489
352
181
691

47
254
345
233
49

581
367
226
530
600
411
197
705

444
272
213
491
478
356
185
973

5l 57
258 , 224
401 347
270 274

49 57

Percentaje
sampling error

1957 1958 1959

. . . . Perceiniige . . . .
5.6
5.1
6.1
3.8
4.3
4.8
7.4
5.1
6.8
5.5
4.6
5.4
8.8

4.9
4.8
69
3.8
4.3
5.1
7.2
5 2
7.2
6.0
4.6
5.2
89

5.0
4.4
6.1
3.9
4.7
4.8
7.2
7.1
66
5.7
4. h
5.1
8.8
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TABLE 6A.(2). An example of stability of relative errare.
(Source: Zarchovich, 1979.)

Relative error in estimated aggregates of number of pigs in Yugoslavia.

Total

<2 months

2-6 months

6-12 months

12+ months

Sows

Ouar
ter

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1964

5.24
4.22
4.44
5.84

_

5.73
7.10
8.76

.
5.07
5.38
6.21

.

5.52
5.35
6.82

_
5.46
6.26
6.37

_
5.48
5.88
6.48

1965 1966 1967 1968 1969

5.23 5.10 5.01 5.39 6.11
4.27 4.25 4.34 4.51 -
4.20 4.46 4.33 6.53 6.21
5.53 5.53 5.59 6.46 6.29

7.14 7.57 7.68 8.21 9.16
6.09 7.18 6.20 7.09 -
6.90 7.06 7.25 9.02 9.18
8.26 8.41 8.92 9.44 9.68

6.01 6.66 5.97 6.66 7.37
5.35 4.93 5.23 5.86 -
5.73 5.88 5.54 8.48 7.54
6.07 6.11 5.65 8.48 7.75

6.10 5.65 6.25 5.95 6.65
6.34 5.30 5.95 5.34 -
4.95 4.83 4.92 6.57 6.06
6.82 7.11 7.03 7.74 7.56

6.30 6.92 6.48 7.15 7.45
6.39 6.46 6.93 7.09 -
6.59 6.62 6.93 8.54 8.16
7.15 6.83 7.18 7.75 8.40

6.25 6.68 6.32 6.91 7.37
6.09 6.08 6.36 6.80 -
6.48 6.39 6.53 8.44 8.04
6.90 6.44 6.44 7.66 8.31

average overall
by quarter average

5.5
4.6
4.8
5.5

8.2
6.6
7.7
9.0

6.7
5.9
6.5
6.7

6.0
5.5
5.0
7.2

7.3
7.1
7.4
7.2.

7.1
6.6
6.9
6.8

5.1

7.9

6.5

5.9

7.3

6.9

Deviation of individual relative errors from the overall average.

--Quarter 1--
Interval no. of cum.'/

95-105
90-110
85-115
80-120
75-125
70-130
65-135
60-140

errors
27
19
12

2

44.3
75.4
95.1
98.4

100.0

--Quarter
no. of
errors
22
14
15
3
3
3

2--
CUm.%

36.7
60.0
85.0
90.0
95.0
100.0

123



6 Dala Reduction and Modelling

ILLUSTRATION 6B SAMPLING ERRORS OF PROPORTIONS AND COUNTS

There are many censuses and surveys where the primary interest is in producing estimates of proportions or numbers
of individual units which possess certain specified characteristics. For example in a survey of housing, the interest may
be primarily in the proportion or numbers of households with access to certain amenities such as running water,
electricity, private toilets, etc. Labour force surveys are another good example dealt with in more detail in the next
illustration. In such surveys the main focus is usually on proportions and numbers of persons in various categories
of the labour force. Similarly in health surveys, the interest may be in estimating proportions or numbers of persons
in various categories such as those who experience illness or injury, or receive treatment during a specified period.
Such estimates are often required separately for numerous geographical subdivisions and groups in the population.
The task of computing and presenting sampling errors is greatly reduced when standard errors can be expressed as
a simple function of the size of the estimates concerned. Such relationships can be established for estimates of
proportions and counts, but not so readily for means or aggregates of values of substantive variables.

Tables 6B.(1) and (2) present two parts of the relationship between the sampling error and certain other parameters
for an estimated proportion or count. The first part, 6B.(1), gives the relationship on the assumption of simple
random sampling (SRS); the second part, 6B.(2), gives the design effects (defts) by which standard errors from the
first part may be multiplied to obtain the final value of the error for a specific characteristic. In this sense, this
illustration represents a more sophisticated (hence more general and accurate) formulation of the relationship than
Illustration 6A where differences in deft arc not explicitly brought in.

To understand the basis of Table 6B.(1), consider a simple random sample of size n drawn from a population of size
N to estimate the proportion p or count N' = p.N of individuals with a certain characteristic. The well known
expression for their standard error with SRS is

se(N') = N.se(p) = J ±f-.p(\-p).fif = I l . ( l-p) . Jtf (6-2)

^¿l^P ¡JÑ (6-3)
/ P

where se stands for the standard error of an estimate; rse is its value relative to the magnitude of the estimate; and
f is the sampling rate = n/N. These equations allows standard errors to be expressed in a very concise form covering
the full range of p values encountered.

124



6.2 Relationship Between the Magnitude of an Estimate and its Standard Error

The data shown relate lo a large sample attached to the census of population in the United States (Waksberg el al,
1973), the results for which were required for a number of characteristics (summarised in Table 6B(2)) for numerous
geographic subdivisions of the country. Because of the very large number of estimates involved, this form of concise
summarisation of the information on sampling errors provides an example of great practical relevance. (A more recent
example on the same lines will be given in Illustration 7E in the discussion of modes of presentation of sampling
errors in survey reports.)

In the present case, the sample was drawn from the census wiih a constant rate f = 0.2. With f constant, (6.1)
expresses se(p) as a function of p and N. (To remind, p is the proportion of the population with a certain specified
characteristic, and N is the total population count in a geographical subdivision of the country.) The magnitude of
se(p) is insensitive to the value of p, especially in the middle range on either side of p = 0.5. Hence in the lower
panel of Table 6B.(1) it has been considered sufficient to show only a few rows: reasonable values for other values
of p may be obtained by interpolation between the rows. Also se(p) is the same for p and its complement q = (1-p).
Columns show the error for different population bases N; it is inversely proportional to the square-root of N along
any row (fixed p). It is not necessary to go 10 very large values of the base N, because with large N the corresponding
standard error becomes too small to be important.

The upper panel of the table shows se(N') as a function of N (columns) and N1 (rows), where N' is the number of
persons with a certain characteristic in the total population N. As shown by equation (6.2), for small p = N'/N,
standard error se(N') depends only on N', varying approximately proportional to its square-root and remaining
practically constant across columns (different population bases, N). The effect of N appears only when p is large, and
generally remains small. The important thing is that for an SRS, the same relationships (6.1) and (6.2) are valid
independently of the particular characteristic defining p, or the particular base population (such as a geographic area)
being considered. The main assumption of the model comes in moving from SRS to actual standard errors through
the introduction of defts in Table 6B(2). The value of deft depends on various factors but, on the basis of empirical
information in the present case, it depends predominantly on the particular group of characteristics being considered.
This assumption is the basis for constructing Table 6B(2). The values shown are actually averaged over a large number
of computations for different characteristics in each group and over different geographical domains. (The last column
in the table shows the range of values averaged.) Different such tables were in fact constructed for different major
regions of the country.
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TABLE 6B.(1). Standard errors or estimated counts and proportions assuming simple random sampling
(Source: Waksbcrg et al, 1973.)

Appro\imaie Standard Error of Estimated Number

till!

50 ....
100 ...
250 .
500 ...
1,000 ...
2,500 . .
5,000 ....
10,000
li.OOO .
25,000 . .
50,000 . . .

• 75,000 .
100,000 ..

1,000 10,000 25,000

.. . . ... 15 15 15

. . . . . . . . . . . :o :o :o
. . . . . . . . . . 30 ?0 30
. . . . . . . . . . . . . . . . 30 -15 45

. . . . . . . . . . . . . . 60 60
. . . . . . . . . . . . . . . «) 95

. . . . . . . 100 130
. . . . . . . 150
.... . . . . . . . ... 150

') For estimated numbers larger thai 100,000, the relative errors are
-') An area

standard

3ascd on I0-Per cent Sampie

Number of persons in area 1)

100,000

15
20
30
45
65

:oo
140
190
230
270
320

250,000 1,000.000 3,000,000

15
20
30

- 45
65

too
140
200
240
300
400
450
490

15
-•o
30
45
65

100
140
200
240
310
440
520
600

15
20
30
45
65

100
140
200
240
310
440
540
620

5,000,000

15
20
30
45
65

100
140
200
240
320
440
540
630

20,000,000

15
20
30
45
65

100
140
200
240
320
450
540
630

somewhat sn-.aller than for 100,000.
s the smallest complete geographic area 10 which the estima:c under consideration
metropolitan statistical area, urbanised area, or the urban or rjril pon

persons in the slate or county, ihe Negro persons etc , do noi represent complete
ion of
areas.

pertains Thus, ihe area inav
the slate or county.

be the stn:c. city, countv,
The rural farm or rjral nonfarm

Approximate Stnnd.ird Errur of Estirruled Percentage Dasal on 20-Per cent Sample

Estimated
percentage im , ̂  ^

2 or 98 . . . . . 11 09 0.6
5 or V5 . . . . . 2.0 1.4 09

IÜ or*' . 2,7 1.9 1 2
25 or 75 . 3 9 2.7 1.7
50 . . . . . . . . . 45 3.2 2 0

Dase orPírcenljge

0 10,000

0.3
04
06
0.9
1.0

25,000

01
03
04
0.5
06

100,000 250,000

O.I O.I
O.I 0.1
0.2 0 1
0.3 11.2
0.3 0.2
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TABLE 6B.(2). Defts to be applied to Table 6B.(1) to obtain standard errors for different types of characteristics.

Factor to be Applied to Standard Error

Subject
Sample

rate
(per cent)

Race
South . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Other regions . . . . . . . . . . . . . . . . . . . 20

Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Household relationship . . . . . . . . . . . . . 20
Families and subfamilies1) . . . . . . . . . . 20
Unrelated i n d i v i d u a l s . . . . . . . . . . . . . . 20
Type of group quarters . . . . . . . . . . . . . 20
Marital status . . . . . . . . . . . . . . . . . . . . . 20
Marital history . . . . . . . . . . . . . . . . . . . 5
State of birth . . . . . . . . . . . . . . . . . . . . . 20
Country of origin . . . . . . . . . . . . . . . . . . 15
Spanish origin or descent . . . . . . . . . . . 5
Nat iv i ty and parentage . . . . . . . . . . . . . 15
Mother tongue . . . . . . . . . . . . . . . . . . . . 15
Year moved into present house . . . . . . 15
Residence in 1965 . . . . . . . . . . . . . . . . 15
Rural farm-nonfarm residence

United States, total . . . . . . . . . . . . . 20
Inside SMSA . . . . . . . . . . . . . . . . . 20
Outside SMSA . . . . . . . . . . . . . . . . . . 20

School enrollment . . . . . . . . . . . . . . . . 15
Years of school completed . . . . . . . . . 2U
Vocational t r a in ing . . . . . . . . . . . . . . . . 5
Veteran status . . . . . . . . . . . . . . . . . . . . 15
Disabili ty . . . . . . . . . . . . . . . . . . . . . . . . 5
Labor force s t a t u s . . . . . . . . . . . . . . . . . . 20
Unemployed . . . . . . . . . . . . . . . . . . . . . . 20
Weeks worked in 1969 . . . . . . . . . . . . . 20
Activi ty 5 years ago . . . . . . . . . . . . . . . 20
Place of work . . . . . . . . . . . . . . . . . . . . . 15
Means of transportat ion to work . . . . 15
O c c u p a t i o n . . . . . . . . . . . . . . . . . . . . . . . . 20
Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Class of worker . . . . . . . . . . . . . . . . . . . 20
Income

Persons . . . . . . . . . . . . . . . . . . . . . . . . ¿Q
Families . . . . . . . . . . . . . . . . . . . . . . . 20

Poverty status
Persons . . . . . . . . . . . . . . . . . . . . . . . . 20
Families . . . . . . . . . . . . . . . . . . . . . . . 20

All other
20 per cent . . . . . . . . . . . . . . . . . . . . . 20
15 per cent . . . . . . . . . . . . . . . . . . . . . 15
5 per cent . . . . . . . . . . . . . . . . . . . . . 5

Average
factor

0.9
1.6
0.8
0.5
0.6
U
0.6
0.6
2.0
1.3
1.6
2.9
1.7
1.8
1.9
2.0

1.7
1 5
I 9
1.0
1.0
1.7
0.9
2.4
O.S
1.1
O S
O.S
1.3
1.3
1.1
1.1
1 .1

i.O
1.0

1.6
1.1

1.0
1.2
2.2

Range of
factors

0.9-1.0
1.0-1.7
0.8-0.9

1.2- 1.4
0.5-0.6
0.6-0.7
.9-2.1
.2-1.5
.5-1.8
.7-3.3
.4-1.9
.6-2.0
.7-2.0
.8-2.2

1.5-2.0

0.9-1.0
1.0-1.1
1.6-1.8
0.9-1.0
2.2-2.6
0.7-0.8
1.0-1.3
0.7-O.S
0.7-O.S
¡.2-1 3
1.2-1.3
1.0-1.1
1.0-1 1
1.0-1.1

0.9-1.1
1.0-1.1

1.7-2.1
1.0-1.2
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6 Dala Reduction and Modelling

ILLUSTRATION 6C ESTIMATES OF COUNTS IN DIFFERENT LABOUR FORCE CATEGORIES.

Many surveys have the objective to estimate ihe number of households or persons in various categories of the
population. This is the case for example with labour force surveys, where most of the statistics of interesi take the
form of estimates of the number of persons in various economic categories by employment, occupation and industry,
etc. Separate estimates are usually required for different geographical areas and diverse demographic and
socioeconomic subclasses in the populalion. This makes it highly desirable to be able to relate standard errors to the
size of ihe estimated counts. The relationship may have to be specified separately for different geographical areas,
different classes of the population, different labour force categories, or different periods of the survey. At the same
lime, il is highly desirable to model the information so as to minimise the number of separate presentations needed.
Because of the greal practical importance of the issues involved, several examples are presented and discussed below
(International Labour Office, 1986). These involve ihe presentation of sampling errors in concise and abbreviated
form lo various degrees. This is done on ihe basis of some underlying model which has not always been made explicit
in the examples given. Some insight can be gained by comparing the various forms in Table 6C with the simple model
of Illusiraiion 6B.

As a point of reference, Table 6C.(1) shows the crude approach of presenting actual values of standard error for a
seleciion of specific estimates, such as for ihe number of employed or unemployed persons in a panicular age or sex
group. While such information may be useful in interpretation of the specific resulls, ils limitation is lhat il provides
no direci information on ihe paitern of variaiion of sampling errors, nor on many oiher subgroups of interesl nol
cxpliciily included.

TABLE 6C. Standard errors in labour force surveys:
[1] Venezuela.

Estimated Standard
figure error

Population aged 15+

In the labour force
males
females

Total employed
males
females

Total unemployed
males
females

8399945

4494689
3423711
1260973
4351373
3155559
1195814
333316
268152
65164

66607

38732
30369
15491
35904
28011
14853
7956
6957
3079

Table 6C.(2) goes a little further. By introducing an age and sex classification, the volume of information displayed
is considerably increased. In accordance with equation (6.2), the main faclor determining se(N'), apart from deft, is
ihe populalion base N; the dependence on p = N'/N is much less marked. This explains the difference between ihe
'loial' column versus ihe 'male' or 'female' columns. (The sample base in the latier is roughly half the former, hence
their absolute error se(N'), is smaller by a factor of around O.7.). By contrast, relative error shown in the last three
columns is determined by (6.3), apart from défi. Il is determined again primarily by N, but this time inversely 10 its
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6.2 Relationship Between the Magnitude of an Estímale and its Standard Error

square-root. However dependence on p is more marked than before (because of the different functional relationship;
compare the factors under the square-root sign in (6.2) and (6.3)). This explains the big differences in relative errors
at the extreme age groups for which p (proportion in the labour force) tends to be much smaller. By showing different
population bases, Table 6C.(2) already brings out some regularities in the pattern of sampling errors. However, it
suffers from the same basic limitation as Table 6C.(1) in that it provides no information directly on categories not
shown. Note also that the table applies only to a particular variable, in this case the population in the labour force;
separate such tables would be required for other variables such as the numbers employed or unemployed.

TABLE 6C. Standard errors in labour force surveys:
[2] Finland. Labour force by age and sex. First quarter, 1983.

Age group

15-74.......

15-19
20-24.......
25-29

30-34.......
35-39.......
40-44.......

45-49.......
50-54.......
55-59

60-64.......
65-69.......
70-74.......

Standa
(1000 |

total r

12

3
4
4

4
4
3

3
4
3

3
2
2

rd error
versons)

nale female

8 8

2 2
2 3
3 3

3 3
3 3
2 2

2 2
2 3
2 2

2 2
2 1
2 1

Relative standard error
(per cent)

total male female

0.5 0.6 0.7

2.8 4.0 4.0
1.4 .9 2.2
1.3 .8 2.0

1.2 .6 1.7
1.1 . .4 1.6
1.2 .7 1.7

1.3 1.8 2.0
1.5 2.0 2.3
1.9 2.6 2.8

3.2 4.2 4.6
10.0 13.0 16.0
18.0 21.0 30.0

Tables 6C.(3) onwards follow a different approach. The standard error of an estimate se(N') is shown simply as a
function of the size (N') of the estimate. It is assumed that the same relationship to size applies to diverse geographic
and other subgroups in the population, independent of the substantive characteristic defining the subgroup. The
underlying assumptions become clear by comparing this with the model in Illustration 6B. It is seen from Table 6B.(1)
presented earlier that se(N') is practically constant for different population bases (N), except for very large N'/N
(generally the first one or two entries in any row). In Table 6C.(3), this variation with N is ignored or averaged away.
Furthermore, this table applies to a particular variable (such as size of the labour force) or to a group of similar
variables, for which deft may be assumed uniform over different domains or subclasses and incorporated directly into
the table. This is the same assumption as in Illustration 6B, except that a separate table of defts is not needed for
the reason noted above.
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6 Dala Reduction and Modelling

TABLE 6C. Standard errors in labour force surveys:
[3] Singapore. (Based on the 1983 survey results)

Size of
Estimate

2 000 000
1 000 000
500 000
200 000
100 000
50 000
20 000

Standard
Error

2 758
3 373
2 754
1 867
1 349
964
613

Size of
Estimate

5 000
2 000
1 000
700
500
200
100

Standard
Error

308
195
138
115
97
62
44

Table 6C.(4) follows the same approach, but shows the relative errors as well. Though relative errors can be useful
in the interpretation of specific results, in terms of 'modelling' the patterns of variation, they are in fact less useful
than absolute values when estimating proportions or counts (Section 6.4). This is because the relative measure is more
sensitive to variations in p among subclasses, variations which have not been properly taken into account in the
simplified model on which Table 6C.(4) is based. The table also shows the effect of sample size by comparing
quarterly and annual figures, the latter being averaged over four quarterly rounds. The reduction from quarterly to
annual averages is by a factor much less than 2 (the square-root of the ratio of sample sizes); this is because of the
positive correlation between overlapping quarterly samples.

TABLE 6C. Standard errors in labour force surveys:
[4] Norway.

SIZE OF
ESTIMATE

000
000

100 000
200 000
300 000
400 000
500 000

1000 000
1700 000

Quarterly figures Yearly averages

STANDARD ERROR
Absolute relative
figure value %
1 400 28.0
1 700 24.3

10 000
20 000
30 000
40 000
50 000
60 000
70 000

2 000
2 800
3 400
4 000
4 000
4 800
5 200

20.0
14.0
11.3
10.0
8.8
8.0
7.4

6 200
8 600
10 300
11 700
12 800

15 900
16 000

6.2
4.3
3.4
2.9
2.6

1.6
0.9

STANDARD ERROR
Absolute relative
figure value %

900 18.0
1 100 15.7

300
800
200
500
800
100
300

4 000
5 500
6 600
7 400
8 100

10 100
10 200

13.0
9.0
7.3
6.3
5.6
5.2
4.7

4.0
2.8
2.2
1.9
1.6

1.0
0.6
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6.2 Relationship Between Ihe Magnitude of an Estímale and its Standard Error

An important consideration is to improve the accuracy of the model by developing separate versions of the
relationship for different types of population subgroups. However, increasing the number of separate versions also
has practical disadvantages. Therefore a compromise is required between the two objectives of accuracy and
conciseness. In Table 6C.(5), accuracy of the model is improved somewhat by introducing separate versions for males
and females. Table 6C.(6) goes much further, by showing the relationship separately for a large number of ethnic,
demographic and socioeconomic categories. Presumably, it incorporates differences both in p and deft among the
categories.

TABLE 6C. Standard errors in labour force surveys:
[5] Italy. National estimates by sex.

Estimate
Y

10 000
20 000
30 000
40 000
50 000
75 000
100 000
150 000
200 000
250 000
300 000
400 000
500 000

Hen
S

2350
2850
3250
3600
4300
4900
5900
6700
7450
8100
9200
10200

Women
S

1950
2400
2800
3100
3800
4400
5400
6200
6950
7600
8800
9800

Estimate
Y

750 000
1 000 000
1 250 000
1 500 000
1 750 000
2 000 000
3 000 000
5 000 000
7 500 000
10 000 000
15 000 000
20 000 000
-

Hen
S

12250
13950
15450
16800
18000
19150
23050
29050
34950
39850
47900
55950
-

Women
S

12050
13900
15500
17000
18350
19600
24000
31000
37950
43800
-
-
-

Y: National estimation in absolute figures, from survey results of a specific variable
(employment, unemployment, apprentices, students, housewives, etc).

S: Corresponding standard error in absolute figures.

A major issue in the modelling of proportions or counts concerns the identification of groups of the population for
which a common form of the relationship between an estimate and its standard error can be used to give results with
acceptable accuracy. The basic assumption is thai the effects of p and deft are uniform within each group. Here the
distinction between cross-classes (defined in lerms of characteristics of individuals) and geographical domains is useful
(Section 4.2.3). Usually, different domains tend to be similar in the overall p, as each includes a cross-section of
individuals with different characteristics. In so far as they form separate design domains, they may differ in the designs
used and hence in deft for a given variable. However, it is not uncommon to have similar designs in different
geographical domains. Consequently it is often reasonable to use a common form of relationship for diverse
geographical domains, as is done in both Illustration 6A and Illustration 6B. By contrast, cross-classes often differ
in p, and also in deft which depends on the subclass size (as explained more fully in the next section). This may
necessitate the use of different forms of the relationship for different types of subclasses, as done in Table 6C.(7).
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6.2 Relationship Between Ihe MagmlucJe of an Estímale and ¡Is Standard Error

The above examples are confined to estimates of proportions or counts. In Table 6C.(7) an attempt has been made
to extend this in a very approximate manner to estimates of values, such as aggregated or average hours worked, or
average or median duration of employment. The underlying model in this extension is to correct for differences in
coefficients of variation (and if necessary defts) between different substantive variables. This extension is not always
straightforward and involves additional assumptions and approximations.

TABLE 6C. Standard errors in labour force surveys:
[7] Australia.

Size of
estimate

k 500
5 000
6 000

standard
error

970
1000
1100

% of
estimate

21.6
20.0
18.0

10 000
20 000
50 000

100 000
200 000
300 000
500 000

1000 000
2000 000
5000 000

1400
2000
2900

3900
5100
6000
7200

9100
11000
15000

14.0
10.0
5.8

3.9
2.6
2.0
1.4

0.9
0.6
0.3

Note. The relative standard error of estimates of aggregate hours worked,
a v e r a g e h o u r s w o r k e d , a v e r a g e d u r a t i o n o f u n e m p l o y m e n t , a n d
medium duration of unemployment are obtained by first finding the relative standard error
of the estimate of the total number of persons contributing to that estimate, and then
multiplying the figure so obtained by the following factors:

aggregate hours worked = 1.2;
average hours worked = 0.5;
average duration of unemployment = 1.5;
median duration of unemployment = 2.0.
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6 Dala Reduction and Modelling

ILLUSTRATION 6D RELATIONSHIP BETWEEN AN ESTIMATE AND ITS ERROR DM
A FUNCTIONAL FORM

The empirical task of determining the relationship between the magnitude of an estimate and its sampling error is
greatly facilitated if some analytical form of general applicability can be established for this relationship. An example
is provided by the following expression used extensively in modelling of sampling errors for estimates of counts (and
of proportions using a similar procedure) in the US Current Population Survey:

= a + blx

where X is the total number of individuals in a subclass possessing a certain specified characteristic; Vx
2 is its

relvariance, ie the square of the rclaiive standard error; and a and b arc parameters estimated from actual
computations by an iterative least squares procedure. In principle the procedure is applied separately to appropriate
groupings of subclasses and ilems. Once established, il can he used lo estimate the variance of other items and
subclasses in the group. Basically, the method is applicable to estimates of proportions and counts of the population
having a specified characteristic; variance of estimates based on values reported for sample units do not lend
themselves lo modelling in this way (United Slalcs 1978 , Chapter VIII). It may be pointed out that the above model
for relvariance implicitly assumes that deft is constant for statistics in any set lo which the same model is applied.
This follows from the observation lhai for a proponion p = X/N, using

varíp) - deft.

ihc relvariance may be rewritten as

which with deft constant lakes the form (6.4).

The determination of the appropriate grouping prior to estimating parameters a and b is important. It is desirable
that the items included in a group have similar design effects. It may be useful to begin with provisional grouping
based on judgement and past experience. Scatter plots of Vx

2 versus 1/X could then be examined to identify
homogeneous groups. Table 6D.(1) provides an illustration of an application of the model.
The same model is applied to smooth and extrapolate sampling error results in the US Health Interview Survey
(Bean, 1970). Table 6D.(2) shows an example of filled resulis using the model. 'Type A' data in the graphs refer to
prevalence and incidence data collected with a recall period of 12 months, and Type B' to certain incidence data
collected with a recall period of 2 weeks. 'Medium range' means that values (of incidence etc) for an individual are
in the range 0-5 (in contrast to other ranges not shown: narrow range with values 0 or 1, occasionally 2; and wide
range with values above 5). This provides a concrete illustration of how the estimates may be divided into groups for
fitting the model.

Table 6D.(3) provides an indication of the goodness of fit: it compares the actually computed and modelled value of
relvariance of estimated incidence of acute condiiions for a large number of subclasses.
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6.2 Relationship Between (he Magnitude of an Estimate and its Standard Error

TABLE 6D.(1). An example of functional relationship between an estimate and its rcl variance.

.000?
10000 IOOOCO 1000000

S :t ni f !!••"*!« (t i
IOOÛOÛ03 1000000&3

items.l
Curves showing relationships between .v' and r;, for some groups of

1 This fleure is reproduced from Morns H. Hansen. William N. Hurwiiz and \Vill\jm
G. Madow. Vol. I. p. 575. . . - -
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TABLE 6D.(2). Examples of functional relationship between an estimate and its relative standard error for two
types of data from the same survey.

(US Health Interview Survey; Bean, 1970.)

10,000 100,000

SIZE OF ESTIUATE (Inlhouundl)

Smoothed relative standard error curve lor aggregate estimates based on 1 year ol data
collection lor Type A data, medium range

I » T 1 J t ! I 7 I IT 1 J 4 1 • y I HT

10,000 UO.ODO

SIZE Of ESTIMATE lin truxno/idi)

Smoothed relative standard error curve (or aiiyreyaie estimates based on 1 vear ol data
collection tor Type B dnia, medium ranrje
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6.2 Relalionsllip Between the Magnitude of an Estimate and its Standard Error

TABLE 60.(3). Incidence of acute conditions for classes
w i t h their actual and smoothed relative variances.

United States Hea l th In te rv iew Survey, Ju ly 1963 - June 1964.
(Source: Bean, 1970.)

CLASS

Other respiratory conditions-male, 15-44----------------
Digestive system conditions-male, 45 and over-----------
Digestive system conditions-female, 15-44---------------
injuries-female, 45 and over - - - - - - - - - - - - - - - - - - - - - - - - - - -
All acute conditions-male, retired, 45 and over---------
Cases of influenza-female, 45 and over - - - - - - - - - - - - - - - - -
Injuries-female, 15-44 ..........................
Injuries-male, 25-44 ............................
Other respiratory conditions-both sexes, all ages-------
Digestive system conditions-male, all ages - - - - - - - - - - - - -
Contusions and superficial injuries-both sexes, all ages
Other current injuries-both sexes, all ages - - - - -
Open uounds and lacerations-both sexes, all ages--------
Fractures, dislocations, sprains, and strains-

- both sexes, all a g e s - - - - - - - - - - - - - - - - - - - -
Digestive system conditions-both sexes, all ages--------
Upper respiratory conditions-female, 17-44 - - - - - - - - - - - - -
All other acute conditions -both sexes, all ages - - - - - - -
All acute conditions-45-64 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Infective and parasitic diseases-both sexes, all
All acute conditions - 15-24 - - - - - - - - - - - - - - - - - - - - - - - - - - -
Cases of influenza-both sexes, all ages - - - - - - - - -
All acute conditions-under 5 .......-....---...-.
All acute conditions-45-64 .-.---------.------------.
All acute conditions-5-14 ..........................
All acute conditions-currently employed, 17 and over----
Upper respiratory conditions-both sexes, all ages-------
All acute conditions-male .......................
All acute conditions-female - - - - - - - - - - - - - - - - - - - - - - - ----
All acute conditions-both sexes, all ages - - - - - - -

ESTIMATE RELATIVE VARIANCE
(thousands) Actual Smoothed
- - - - - 1,064 .044017 .057333

019628 .030473
009058 .012886
007866 .010957
005896 .009996
006188 .009786
005229 .007539
006982 .007505
005627 .007435
003390 .006408
004305 .006139
002849 .005131
002650 .004148

- 2,012
- 4,827
- 5,702
- 6,269
6,408

- 8,402
- 8,441
- 8,524
9,961
10,421
12,603
15,835

- - - - - - - - 16,366
- - - - - - - - 20,608
-- - - - - - - 21,572
-- - - - - - - 51,941
---- - - - - 52,539
ages---- 55,283
-- - - - - - - 55,836
---- - - - - 61,980
- - - - - - - - 76,083
-- - - - - - 79,701
--- - - - - 103,653

104,100
333,797
180,182
207,175
387,358

.002838

.002135

.001949

.001108

.001071

.001491

.001053

.001948

.000819

.000747

.000686

.000619

.000554

.000455

.000428

.000343

.004024

.003261

.003129

.001485

.001471

.001414

.001403

.001296

.001114

.001078

.000902

.000899

.000770

.000653

.000609

.000473
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6 Dala Reduction and Modelling

6.3 PORTABLE MEASURES OF SAMPLING ERROR

The Concept

The magnitude of the standard error of a statistic depends on a variety of factors such as

[1] the nature of the estimate
[2] its units of measurement (scale) and magnitude
[3] variability among elements in the population (population variance)
[4] sample size
[5] the nature and size of sampling units
[6] sample structure; sampling procedures
[7] estimation procedures.

Consequently, the value of the standard error for a particular statistic is specific to the statistic concerned and can,
at best, be imputed directly to essentially similar statistics, based on samples of similar size and design drawn from
the same population. To reíale the standard error of one statistic to that of another, it is necessary to decompose the
error into factors which are less specific to any particular statistic, ie factors which are more portable across different
statistics. The term 'portability', introduced by Kish, refers to the possibility of carrying over from one survey to
another, from one variable to another, or from one population subclass to another, the conclusions drawn regarding
some measures of sampling error. A measure portable across a set of statistics implies that its value is the same or
similar for all statistics in the set, or that its values can be related in some way. Illustration 6A given earlier provided
an example of how relative error may be stable (portable) across similar surveys in particular circumstances. This and
other examples discussed previously are special cases of the more general model discussed below. The standard error
of (say) a mean may be expressed in several related forms involving measures portable to different degrees:

se(y) = y.rse(y) (6-4)

se(y) = deft.sr(y) (6.5)

se® = deft.slfi (6-6)

(6-7)

deft2 = D^[l + (b'--l).roh] (6-8)

Each of these will be explained and discussed in the following.
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6.3 Portable Measures of Sampling Error

[1] Relative Standard Error

Relative standard error rse in (6.4) is standard error of an estimate divided by the magnitude of the estimate

rse(y) = ̂

This measure removes the variation in the absolute value of the standard error, se, due to the units of measurement
and magnitude of y, but of course still depends on the other factors determining the magnitude of se. Nevertheless
its value may be fairly stable in certain situations, as for example for estimates of a given variable over a given
population or subclass from different rounds of a survey with similar design, sample size and methodology. In such
situations it may be reasonable to average ihe relative errors computed from different rounds, and use the average
in place of the individual computed values as a more reliable estimate applicable to all the rounds. Or the average
computed from past rounds may be used to predict rsc for the statistic in future rounds. In this sense the relative
measure is more portable across survey rounds, while the actual se varies in proportion to the size of the estimate
from one round to another over time. Note that this assumption of portability needs to be empirically established
and periodically reconfirmed by fresh compulations as new data become available from subsequent rounds. Whatever
the measure, there can be diverse sources of variation in sampling error which cannot be controlled or taken fully
into account in any model. 'Portability' therefore is a matter of degree; it is a relative rather than an absolute concept.

Note on terminology
The relative standard error is also commonly referred to as the 'coefficient of variation' (cv). However, the latter term
is also used for a measure of the relative variability among elements in the population. To avoid confusion, it is
preferable to reserve the term cv for use in the last mentioned sense, and use rse for the relative standard error of
sample estimates.

[2] Design Effect and Standard Error in an Equivalent Simple Random Sample

In (6.5), standard error for a statistic estimated from a complex sample is factorised into two pans: the design effect,
and the standard error which would be obtained with a simple random sample of the same size. This basic
decomposition was considered in detail in Section 5.2. Each of the two components can be further decomposed into
more portable measures as discussed below.

The measure deft is more ponable than the actual standard error, since it does not depend on factors which affect
both se and sr in the same way, factors such as units of measurement and the magnitude of the estimate, its variability
in the population, and above all, the overall sample size. Consequently, deft is also expected to be portable across
a wider range of statistics and situations than relative error, rse, since the latter removes the effect of only some of
these factors. For these reasons, deft is one of the most commonly used and useful measures of efficiency of the
sampling design.

[3] Population Variance: Standard Deviation

Equation (6.6) isolates in SRS error the effect of the sample size. The concept of population variance (s2) and its
square-root, the standard deviation, was also discussed in Section 5.2. Since s2 does not depend on the structure or
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6 Data Reduction and Modelling

size of ihe sample, but only on characteristics of elements in the population, it is a very portable measure. Also in
most practical samples, it can be estimated well and simply from the sample observations irrespective of the
complexity of the design, as detailed in Section 5.2.

[4] Coefficient of Variation

The measure s (or s2) still depends on the scale of measurement and magnitude of the estimate. This is removed in
the coefficient of variation

cv = s/y

The coefficient of variation is more portable than standard deviation. Similarly distributed variables may have similar
cv's, irrespective of their actual magnitudes or scales of measurement. However, cv is a useful measure only when the
denominator in the above expression is not close to zero, as for example may happen for estimates of differences
between subclass means. Also it is more useful for means and ratios than for proportions. For a proporlion,

cv = sip =
P

may in fact be less portable (more variable with p) than

* = bU-p)]"2

which lends lo be quite insensitive to p values. Also, unlike s, cv for a proporlion lacks symmetry in thai it is not the
same for a proporlion p and its complement (1-p).

Several examples of the portability and uses of the measures s and cv arc discussed in Illustration 6E below.

[5] Rate of Homogeneity (ron)

Equation (6.8) decomposes the overall design effect. Afler removing ihe effect of increased error due to weighting
(Dw) on'the lines of Section 5.3, it isolates the effecl of ihe average 'cluster size' (ic the average number of elements -
selected per sample PSU) to obtain a more portable measure, roh (See Section 6.5).

Unit Variance

Unit variance is another practically useful concept, which combines population variance and design effecl. It refers
to variance per one sample unit, and applies when the variance or its components vary inversely with the number of
units at the corresponding stage in the sample. Unit variance is portable across designs which are identical except for
the numbers of sample units.Consider for instance a design in which the conditions of Section 2.2 apply and the
variance of a mean is approximately inversely proportional to ihe number of sample PSUs. Unit variance (variance
per PSU) defined as

unit variance = actual variance x no. of PSUs
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6 4 Decomposition of SRS Variance

is therefore a portable measure having approximately the same value in designs which have different numbers of PSUs
bul are identical in other respects. By inverting the above relationship, the effect of the number of sample PSUs on
variance can be assessed on the basis of given unit variance, provided that other aspects of the design are fixed. This
can be useful in survey design work, and also in imputing results from the total sample to its geographical domains
with similar design but differing numbers of PSUs. The concept can be extended to units al different stages.

6.4 DECOMPOSITION OF SRS VARIANCE: POPULATION VARIANCE AND
COEFFICIENT OF VARIATION

Portability of the Measures

For a proportion p, the standard deviation s can be computed directly from the estimated proportion (eq. 5.5); there
is no need to 'impute' it from other statistics. Furthermore, s is rather inscnsiiivc to the exact value of p, especially
in a fairly wide range around p = 0.5. As noted earlier, the relative measure cv = s/p is in fact more variable with
p, and in this sense less portable across different values of p.

By contrast, for the mean y and similar statistics of a substantive variable, s and cv = s/y are portable
measures, and it is useful 10 compile information on cv's for different types of variables. In so far as s varies in direct
proportion to the scale and size of ihe estimate, the coefficient of variation can be a stable measure dependent only
on the shape of the distribution of variable y in ihe population. There are many situations in which the above pattern
holds. For instance in comparisons over time between different rounds of the same survey, or between geographical
domains of the country, or between subclasses in the sample, it is often found that the variation in s reflects
differences in y values, so that s/y is rather stable across the categories. Of course, for certain types of variables,
the relationship between the standard error and the mean can be more complex. For instance Little (1978) notes that
for variables which represent cumulative counts (such as cumulative fertility or some other cumulation of events over
time), s: varies in proportion to the mean, in classes such as age groups closely related to the variable being estimated.
In general one may think of a relationship of the form

,1-1s a (y)° ; cv a (y)'

meaning that for variables with a in the range 0.5 to 1.0, cv is a more portable measure than s, but s may be more
stable hence preferable for variables with a below 0.5. The value of a has to be empirically determined from
computations over different types of variables. Other specific models for cv have for example been noted in United
Nations (1989, pp 160-165) in the context of surveys of household income and expenditure.

141



6 Dala Reduction and Modelling

ILLUSTRATION 6E INFORMATION OF CVs.

One of the important objectives of computing sampling errors in household survey programmes should be to compile
information on s and cv values for many variables over different types of subclasses and domains, and to study the
pattern of their variation.

[1]. Examples of CVs from Comparative Surveys

Table 6E.(1) provides an example of cv's for means of a few selected variables from fertility surveys in four developing
countries. For each survey, estimated values of cv are shown for the total country, the urban sector, one arbitrary
region of the country, and for women aged 25-34, (which is a cross-class well distributed over the entire population).
For reference, the last two columns of the table show the value of the mean for the total sample and for the age
subclass. Several interesting features of the data may be noted.

(1) For a given domain, the most marked differences in cv arc by the nature of the variable. Given the relatively
strong family size norms, cv's for the variable 'ideal family size' arc the smallest, mostly around 0.4-0.45 in the
present example; those relating to fer t i l i ty (children born or alive) are intermediate and show a wider range of
variation by country and domain; and cv's are much larger for the remaining variables concerned with post-parlum
behaviour.

(2) For a given country and variable, urban cv's arc generally only slightly higher than rural cv's - this conflicts
with the commonly held assumption by survey practitioners tha t the urban population is generally much more,
heterogeneous than rural. (Of course such assumptions may be valid for some other types of variables not
considered here, and there may be other reasons for ovcrsampling urban areas. However, the present data show
that greater urban heterogeneity should not be taken for granted in all cases.)

(3) When the characteristic defining subclasses is closely related to the substantive variable being estimated, it
tends to parti t ion the. population in to more homogeneous groups, thus lowering the cv value within each of the
group or subclass defined in terms of categories of the variable. In relation to the age class, this effect is seen most
clearly for fer t i l i ty variables. By using the last two columns, i t can be seen t h a t this effect is somewhat stronger
in the case of s, in this sense making s less 'portable' than cv.

(4) The above pattern is consistent across countries. This gives confidence in the value and portability of the
results across different conditions, at least for a given type of survey. There are notable differences of degree,
however. For example, compared with the two Asian countries women in the two African countries are more
heterogeneous in terms of fe r t i l i ty , but much more homogeneous in terms of post-parlum behaviour. The variable
'ideal family size' clearly illustrates the advantage of cv over s in terms of portability: the former is much moré
stable over countries and domains, while the latter varies as markedly as the mean values shown in the last two
columns.
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6.4 Decomposition of SRS Variance

TABLE 6E.CO- Pattern of cv's in fertility surveys.
(Source: Demographic and Health Surveys, country reports.)

ChiIdren
ever-born

No. of living (1)
children (2)

(3)
(4)

Months of post(1)
par tun (2)
amenorrhoea (3)

(4)

Months of post(1)
partum (2)
abstinence (3)

(4)

Total Urban a Region Age 25-34
Estimated Mean
Total Age 25-34

Ideal
size

Family (1)
(2)
(3)
(4)

0.44
0.41
0.45
0.43

0.40
0.45
0.41
0.39

0.55
0.40
0.55
0.31

0.41
0.36

-
0.42

2.35
2.92
1.39
1.19

2.65
71
64
40

.65

.13

.65

.27

2.08
2.85

1.20

21
05
43
26

10.9
7.5
10.9
14.0

3.16
2.56

5.29

(1)
(2)
(3)
(4)

0.75
0.70
0.88
0.92

0.75
0.73
1.03
1.02

0.85
0.71

-
0.96

0.59
0.56

-
0.55

3.39
3.00
3.66
3.16

2.93
2.19

-
3.30

0.74
0.70
0.89
0.94

0.73
0.71
1.03
1.02

0.84
0.70

-
0.95

0.58
0.56

-
0.57

2.90
2.83
3.28
2.62

2.57
2.13

-
2.79

Months chi Id
breastfed

(1)
(2)
(3)
(4)

1
1
0
0

.26

.27

.82

.83

1.44
1.81
0.90
0.97

1
1
1
0

.40

.43

.00

.86

1
1

0

.17

.33
-

.84

25
22
19
20

.1

.7

.4

.3

24.1
18.6
-
19.7

10.8
6.5

13.7

3.88
3.28
2.26
1.29

4.40
3.88
2.47
1.42

4.64
3.38
3.69
1.28

3.62
3.59

-
1.37

5.32
6.62
5.85
13.5

4.81
4.85
-
12.1

Notes: (1) Indonesia; (2) Sri Lanka; (3) Kenya; (4) Ghana.
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6 Data Reduction and Modelling

[2]. Use in Survey Design

Table 6E.(2) is presented to indicate how information on cv's can be helpful in survey design. The figures actually
come from an establishment rather than a household survey (Cyprus, 1990), but still illustrate the point being made.
The table shows values of cv's (in percentage terms) for a number of economic sectors (ISCO classification) for a set
of important variables which were measured in an annual survey of establishments. Except for employment, the other
variables shown are in terms of value per employee. Employment was also measured by selecting establishments with
probability proportional to past employment. These are common methods of control in establishment surveys where
units differ greatly in size. Consequently the cv values shown are much lower than would be the case if a random
sample or population of establishments were considered without controlling for size.

Despite this control, the table shows big variation in cv both by sector and variable, though the pattern is fairly
consistent across variables within sectors and vice versa. There arc importanl consequences of the figures for survey
design. Averaged over variables, the cv values vary by a factor of 3-4 by sector. Since the required sample size for the
same relative precision varies in proportion to the square of cv, this indicates very large differences (perhaps by a
factor of up to 10) in sample size requirements for different sectors. Secondly, it is seen that cv's are particularly large
for some variables such as direct costs, and especially investment (which is often undertaken in lump sums and
infrequently by individual establishments). Consequently these variables are extremely diff icul t to measure with
precision, and may require sample sizes which are too large to be practicable.

TABLE 6E.(2). Coefficients of variation (X) in a population of economic establishments.
(Source: Cyprus, 1990.)

Variable
sales output costs value employ- invest- aver.

added ment ment of 2-5
[1] C2] [3] M [5] [6]

Sector:
31
32
33
34
35439 - 106 117 57 83 253 91
36 - 95 108 59 46 146 77
39 - 113 148 61 70 230 98

70
94
10
82

78
115
73
87

51
61
64
64

78
66
76
57

246
177
271
169

69
84
71
72

61
62

7112
7113
7114

83
63
9
5

5000
5100
5200

67
27

.
-
-

54
67
97
41

105
115

53
72
170

55
65
79
108

131
210

65
99
266

194
84
165
196

104
111

55
72
123

51
73
69
108

50
60
55

100
77

47
97
244

47
53
51
89

105
60
70

217
321

411
218
326

235
430
410
286

110
128

55
83
201

87
69
91
125

Average for employment (variable 5) 80
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6.4 Decomposition of SRS Variance

[31. Accumulation of Information on CV's

Many statistical packages routinely compute sampling errors without taking into account the sample structure, ie by
assuming simple random sampling. While on the whole this represents a serious shortcoming of the packages, it has
the useful side-effect that it automatically provides information on cv's. As noted earlier, it is very helpful for survey
design to accumulate information on cv's for diverse variables over different subgroups of the survey population. Table
6E.(3) provides some figures (from an unpublished source) for illustration from household income and expenditure
surveys in two African countries. These may be useful in other situations to the extent that they are portable.

TABLE 6E.(3). Examples of cv values in income and expenditure surveys

Income
from employment
farming
other self-employment
Rent
Remi ttance
Other income
Total income

Expenditure and consumption
Food expenditure
Other consumer expendí.
Consumption of own produce

food
non-food

Consumption of goods/services
received in kind

Remittances given
Total expenditure

--Country
(a)

1.1
1.0
1.1
1.3
1.2
1.5
0.9

0.9
1.0

1.1
1.3

es
0.9
1.3
0.7

A-
(b)

1.6
1.0
1.7
1.9
1.6
2.2
1.1

0.9
0.9

0.9
1.8

1.3
2.0
0.7

--Country B--
(a) (b)

1.0
0.9
1.2
1.3
1.6
1.7
1.0

0.9
1.1

0.9
1.2

1.1
1.4
0.8

1.7
0.9
1.6
2.0
2.4
1.7
1.5

0.9
1.0

0.8
1.7

2.0
2.4
0.8

Notes: (a) = mean per household; (b) mean per capita
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h Data Reduction and Modelling

6.5 DECOMPOSITION OF THE DESIGN EFFECT: THE RATE OF
HOMOGENEITY; THE EFFECT OF SAMPLE WEIGHTS

6.5.1 THE BASIC MODEL

Though generally very portable and useful measure, ihe design effect still depends on other specific features of the
design which l imil its portabilily. Therefore it is useful 10 decompose deft into more portable components lo the
extent possible.

To begin wilh, a most useful model is obiained from generalisation of a well-known result for a single stage simple
random sample of equal sized clusters. In tha t design the effeci of clustering is 10 increase variance over SRS of
elements by ihe factor

Deft2 = 1 + (fl-l).p (6-9)

where p is ihe iniraclass correlation coefficient measuring ihe homogeneity of clusters wilh respect to the variable
under consideration, and B is ihe constant cluster si/e. It can be shown lhat the above expression also applies in the
presence of random subsampling of elements \ \ i lhin clusters; the only change is to replace B by the size of the
subsample (b) selected per cluster. Provided that the variation in subsamplc sizes is not large, a reasonable
approximation is provided by using their average value b in the expression

deft2 = 1 + (b-l).roh (6-10)

where roh is a sl ightly modified version of the iniraclass correlation, introduced by Kish (1965; Sec 5.6B). The
importani point is t h a t roh in (6.10) is essentially the same as ihe iniraclass correlation of complete PSUs in (6.9),
at least when the subsampling wiihin PSUs is simple random. This implies that roh is a measure basically independcni
of ihe size of ihe subsamples taken. This makes roh a more ponablc measure than del't which depends direclly on
the subsample sizes b as shown by (6.10).

These ideas can be generalised to a mult is tage design, on the assumption tha t departures from selfweighting and
variations in the 'cluster sizes' are not large. (Note on terminology: For simplicity, it is common in the context of a
multistage sampling design to use the icrm 'cluster sizes' 10 refer 10 the size of the sample, ie the number of elements,
selected per PSU. We will follow this convenient usage, though an expression like 'the size of the primary selection'
would be more correct.)

For a given variable, roh depends on the size and nature of ihe PSUs, and the method of subsampling wiihin the
PSUs. With those given, il is essentially independent of the size of the subsamples taken. This makes roh portable
across similar designs wilh different subsampling rales (different b); and in practice even more importantly, ponable
from ihe total sample to subclasses which differ from ihe lotal sample primarily in the effective 'cluster sizes' involved.
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6.5 Deconiposition of ihe Design Effect

Empirically the dependence of roh on the size of the original PSUs has been noted to be of the form B"a, where a
is mostly in the range 0.2 to 0.6 (Hansen et al, 1953, Vol I, pp 306-9). What this means is that it is expected to be
lower for larger, more dispersed PSUs, and higher for smaller, more compact unils taken as the PSUs. Clustering of
sample elements within PSUs - as would result in designs with more than two stages - tends to increase the value of
roh above that of the complete clusters (equation 6.9), or equivalently, above that with random subsampling within
PSUs. With stratification or systematic subsampling within PSUs, roh may be reduced somewhat.

To summarise, model (6.10) has been developed to provide a reasonable approximation for deft and to separate out
the effect of cluster sizes in complex multistage designs, when the overall design is essentially self-weighting and the
variation in cluster sizes is not large. Some modifications to the model when these conditions are not met are
possible, as noted below. Roh measures the actual intraclass correlation of the complete PSUs to the extent sampling
of ultimate units within PSUs is simple random.

A simple example

The following simple example may clarify the relationship of deft and roh to cluster size b in (6.10). Suppose that
a two stage sample of size around n = 2500 is drawn by selecting 49 clusters and by selecting an average of 51
elements per cluster. Assume also that for a particular variable, deft2 = 2; in other words, the variance of the variable
in the clustered sample is twice as large as its variance in an SRS of the same size, meaning that an SRS of
n' = 2500/2 = 1250 would have given the same precision. The implied roh value for the variable under this design
is:

roh - - 1 = -L = 0.02
b-l 50

Now suppose that, retaining the same design, the average subsample size is reduced to b = 26. The model expects
roh to remain unchanged (portable across the two designs) because the nature of the units and the subsampling
procedure has not changed. From (6.10) with roh = 0.02, we get deft := 1.5. In the above sense, roh removes the effect
of b in deft, and is a more portable measure. However, it should be emphasised that roh is specific to a particular
variable, type of sampling units and subsampling procedures. Incidentally, the above example shows that while the
SRS variance is doubled by halving the sample size (in terms of the number of u l t imate unils), variance of the
clustered sample (with the same number of higher stage unils, but smaller sample lakes at the last stage) is increased
less rapidly with decreasing sample size, by a factor of only 1.5.

Note that ihe above fairly dramatic illustration of the effect of changes in sample size is based on the assumpiion ihat
the estimates being considered are for the total sample, where b and hence deft values are relatively large. However,
Ihe effect may be much less marked when results over subclasses are considered. As discussed in more detail in
Section 6.5, for subclasses reasonably well distributed over sample clusters, the effective clusier sizes (b) declines in
proporiion to the subclass size, resulting in smaller défi values for a given roh. Wilh very small b, and hence deft close
to 1.0, the impact of overall sample size on variance becomes similar to that in an SRS - variance increasing in direct
proportion 10 the decrease in sample size.
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6 Data Reduction and Modelling

6.5.2 INCORPORATING THE EFFECT OF VARIABLE CLUSTER SIZES

Variability in cluster sizes (ie, in the sizes of the primary selections) is unavoidable in most samples. Often sharp
differences are introduced as a result of using different designs in different domains of the sample. The effective
cluster sizes for subclasses can be much more variable than those in the total sample. When the cluster sizes vary
greatly, it is necessary to modify (6.10) to separate out the increased variance resulting from that variability. A version
which has been proposed by several authors is to replace the average cluster size b in (6.10) by

V ¿2

ff = b{\ + cv\b)\ = ~i-l (6.11)

where cv(b,) is the coefficient of variation of cluster sizes, b,. In terms of practical utility of a form like (6.11), the
question is always whether it is necessary to introduce complexities in the basic model (6.10). The answer depends
on the magnitude of the effect, and the use to be made of derived measures like roh. With a given population, type
of units, frame and method of sampling available, similar variabi l i ty in sample sizes will be encountered in all designs,
and the separation of its effects may not be important for 'portability'. However there are situations in which taking
into account the effect of variation in cluster sizes represents a significant improvement to the basic model (6.10).
One important case is the design in which greatly different cluster sizes are used in different domains. Consider the

simple case in which the average cluster si/.cs b^ and b2 differ greaily between two domains of relative sizes W,

and W, respectively. In place of the simple average of the cluster sizes, it is more appropriate to use the weighted
average when combining the two domains (Kish cl al, 1976):

In a self-weighting sample we have

Wl a u, = uj.

where n, is the sample size and a, the number of primary selections in domain 1; similarly for domain 2. This gives:

which is the same as (6.11) assuming a uniform cluster size within each domain.
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i.) 5 Decomposition of the Design Effecl

6.5.3 INCORPORATING THE EFFECT OF WEIGHTING

As described in Section 5.3, the effect of 'haphazard ' weights is to inflate variances (and defts) by a factor which lends
!o be similar and persist across different variables and subclasses. (Several i l lustrations of this persistence are given
below.)

By rewriting (6.10) as equation (6.8) given earlier, we obtain a more portable roh which is not affected by the effect
of haphazard weights on variance:

défi1 = D^[\ + (b''-l).roh]

The loss factor due to weighting, Dw. is defined in equation (5.10).

6.5.4 VARIABILITY OF COMPUTED MEASURES

II is importani lo emphasise lhai variance estimates from a sample are themselves subject to variability, par t icular ly
in many practical designs based on relatively small numbers of PSUs (Section 4.4.5). Hence averaging of défis and
rohs resulting from individual computations is necessary. In the present context, the impor tant point is lhat roh, while
in principle more portable than deft, tends to be more unstable. This is because roh is computed as the ratio of two
quantities which may both be small, especially when b and hence deft is close to 1:

roh = - (6.12)
b - 1

Since often deft and roh values vary greatly by variable within the same survey, averaging over variables is generally
not appropriate, except sometimes over a set of subsiantivcly similar variables. Stable patterns are more readily
encountered when considering the same variable or similar sets of variables over diverse subclasses of the sample.
Over appropriately defined sets, averaging of deft (raiher than deft2) values is usually preferable beca use of the smaller
range of values encountered. An alternative sometimes useful is to fit models to a function of (deft2-!), which actually
is similar to modelling or averaging in terms of roh values. Several examples of this appear in the models discussed
in the following sections.

Since empirically roh values tend to be rather unstable, it is often preferable to use the median rather than the mean
in averaging the results, so as to l imit the effect of extreme values; or one may apply an equation like (6.12) to already
averaged deft values to compute roh.
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6 Data Reduction and Modelling

ILLUSTRATION 6F EXAMPLES OF DEFTS AND ROMS FROM HOUSEHOLD
SURVEYS

It is important to document information on deft and roh values for different situations, types of variables, designs,
populations and subclasses. This illustration provides a number of examples, and much more needs to be done in this
respect, especially from diverse surveys in developing countries.

Persistence of the Effect of Weighting

Tables 6F.(l)-(3) show that the simple expression (5.10) works well to isolate the effect of haphazard weights for
diverse variables, not only for the total sample but also for cross-classes of various types and sizes cutting across the
sample structure. Table 6F.(1) shows, for each variable, the ratio (Dw) of (i) the standard error for a random sample
of elements with the actual sample weights, to (ii) the standard error corresponding to a self-weighting simple random
sample of the same size. (See Table 4A.(3) for the variable names.) The computation is based on equation (5.12),
which is distinct for each variable, but the results arc mostly very close to the overall value predicted by the much
simpler and general expression (5.10)

Table 6F.(2) presents two sets of results for Thailand, for which the effect of weighting, as shown in the previous
table, is relatively large. The first part shows the Dw values for the urban and rural domains and for various
adminislralive regions of the country, averaged over groups of variables. Because of the smaller sample sizes per
domain, the results are generally less stable, bul with the cxcepiion of ihe small group '6' concerning background
characteristics, ihe results arc s imilar across variables wilhin domains. The second part of the table shows ihe same
calculation for age groups, which are cross-classes, well distributed over the total sample. The effect of weighting is
similar 10 that for the toial sample, and again stable across di f ferent variables.

From a different set of surveys, Table 6F.(3) shows défis for very-small cross-classes, for which the design effects are
expected 10 be close 10 1.0 except for the effect of weighting. (See section 6.5 for a discussion of subclass défis.)
Values have been averaged over groups of variables individually listed in Table 4A.(1). In all cases, the results are
again very close to ihe prediction of equation (5.10).

150



TABLE 6F.(1). The effect of weighting on dcfl values for diverse variables.
Egypt and Thailand -total sample. (Source: Aliaga and Verma, 1991.)

variable

1 1 BBEFXX
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3

4
4
4
4
4
4
4
4
4
4

5
5
5
5
5

6
6
6

2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
26
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44

45
46
47

CDEAD
CEB
CEB40
CMAR
CSUR
EXPOS
PREG
SINGLE

ATTE
BCG
COUGH
DIAR
DIATR
DPT
FEVER
FULLIM
HCARD
HTAGE
MEASLE
POLIO
TETA
TREATC
TREATF
WTAGE
WTHGT

DELAY
IDEAL
NOMORE

CUSE
EVUSE
KAN Y
KMOD
KSOURC
UCOND
UIUD
UHOD
UPIL
USTER

ABST
AMEN
BF
UABST
UTRAD

EDUC
MBEFXX
NOED

EGYPT
wted
deft

1.46
1.57

1.37

1.20

2.49
1.62

1.14
1.23
1.42

0.99

1.54
1.34
1.83

1.11
1.64
1.50

2.27
2.70

1.66
1.32
1.89

1.66

1.20
1.24
1.24

3.07
2.24
2.96

unuted
deft

1
1

1

1

2
1

1
1
1

0

1
1
1

1
1
1

2
2

1
1
1

1

1
1
1

2
2
2

.41

.52

.33

.16

.43

.57

.11

.20

.37

.96

.49

.30

.79

.08

.59

.46

.20

.63

.60

.28

.82

.62

.17

.21

.20

.99

.18

.88

ratio

1
1

1

1

1
1

1
1
1

1

1
1
1

1
1
1

1
1

1
1
1

1

1
1
1

1
1
1

.03

.03

.03

.03

.03

.03

.03

.03

.03

.03

.03

.03

.02

.02

.03

.03

.03

.03

.03

.03

.04

.03

.03

.03

.03

.03

.03

.03

THAILAND
uted unwted
deft deft

1
1,

1

2

1
1

1

1

1
2
1

1
1

2

1
1

1
1
1

2

.84

.59

.73

.17

.48

.17

.63

.83

.41

.35

.37

.54

.72

.10

.86

.88

.25

.36

.51

.10

1.48
1.33

1.40

1.78

1.21
0.94

1.40

1.48

1.17
1.73
1.13

1.27
1.41

1.54

1.55
1.56

1.08
1.12
1.26

2.06

ratio

1.25
1.20

1.24

1.22

1.22
1.25

1.16

1.24

1.20
1.36
1.21

1.21
1.22

1.36

1.20
1.21

1.16
1.21
1.20

1.02

average= 1.03 average=1.22
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6 Dala Reduction and Modelling

TABLE 6F.(2) Pervasiveness of the effect of weighting for defts over subclasses:
Illustration from Thailand.

Deft values including the effect of weighting -
averaged over variable groups, for various domains and subclasses

TOTAL URBAN RURAL REG1 REG2 REG3 REG4 REG5 15-19 20-24 25-29 30-34 35-39 40-44 45-49

variable
group
1
2
3
4
5
6
all

1.72
1.65
1.71
1.82
1.37
2.10
1.69

1.35
1.16
1.15
1.21
1.09
2.09
1.24

1.59
1.55
1.62
1.73
1.28
1.89
1.59

1.31
1.13
1.12
1.11
1.04
2.10
1.19

1.79
1.27
1.43
1.19
1.18
2.20
1.39

1.36
1.51
1.42
1.67
1.26
1.66
1.48

2.13
1.87
1.94
1.84
1.44
2.41
1.87

1.30
1.54
1.40
1.66
1.19
1.99
1.48

1.20
1.23
1.26
1.30
1.24
1.17
1.25

1.34
1.40
1.22
1.51
1.31
1.28
1.37

1.49
1.37
1.37
1.38
1.20
1.34
1.36

1.59
1.30
1.14
1.29
1.21
1.39
1.29

.59

.19

.10

.33

.27

.24

.27

1.33
1.26
1.07
1.35
1.27
1.40
1.28

1.53
1.18
1.16
1.17
1.10
1.04
1.23

Deft values excluding the effect of weighting -

1 1.40
2 1.36
3 1.34
4 1.47
5 1.15
6 2.06
all 1.39

1.28
1.11
1.10
1.09
1.03
2.05
1.16

1.57
1.16
1.22
1.02
1.07
1.86
1.22

1.22
1.35
1.28
1.49
1.15
1.77
1.35

1.64
1.43
1.32
1.52
1.16
2.55
1.48

1.26
1.44
1.34
1.60
1.11
1.99
1.42

1.30
1.13
1.11
1.17
1.05
2.02
1.19

1.39
1.36
1.35
1.49
1.14
1.73
1.38

0.99
1.06
1.07
1.09
1.06
1.04
1.06

.15

.16

.11

.20

.09

.18

.15

1.11
1.14
1.21
1.08
1.01
1.27
1.12

1.23
1.07
1.06
1.05
1.04
1.42
1.10

1.19
1.04
1.02
1.11
1.04
1.36
1.09

1.16
1.00
1.03
1.09
1.03
1.27
1.07

1.30
1.03
1.09
0.99
0.97
1.22
1.09

The effect of weighting across variables and subclasses (ratio of the above) -

1 1.23
2 1.21
3 1.27
4 1.24
5 1.19
6 1.02
All 1.21

1.05
1.05
1.05
1.11
1.06
1.02
1.06

1.01
1.34
1.33
1.69
1.20
1.02
1.30

1.07
0.83
0.87
0.75
0.91
1.18
0.88

1.09
0.88
1.09
0.79
1.02
0.86
0.93

1.08
1.05
1.06
1.04
1.14
0.83
1.05

1.64
1.66
1.75
1.57
1.37
1.19
1.57

0.94
1.14
1.03
1.12
1.04
1.15
1.07

1.21
1.16
1.18
1.19
1.17
1.13
1.18

1.16
1.21
1.10
1.25
1.20
1.08
1.19

1.34
1.20
1.13
1.28
1.19
1.05
1.21

1.29
1.22
1.07
1.23
1.16
0.98
1.18

1.34
1.15
1.08
1.20
1.21
0.91
1.17

.15

.26

.04

.23

.24

.10

.20

1.18
1.15
1.06
1.18
1.13
0.85
1.12
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6 Dala Reduction and Modelling

Dependence on Rohs on the Nature of the Variable.

It is important to note that deft and roh value arc specific to the substantive variable under consideration. Different
variables in the same survey may have several-fold differences in roh values. Hence there is not one 'design effect'
for a sample, but different factors depending on the variable.

In Table 6F.(4), Kallon and Blunden (1973) report markedly different design effects for individual and household
characteristics in the British General Household survey. The implied roh values (not shown here) differ even more
markedly.

As another example, Kish et al (1976) report greatly differing roh values for different types of variables in fertility
surveys. It is found in fertility surveys that roh and deft values arc often low for demographic variables (reflecting a
low degree of homogeneity among individuals within clusters), higher for socio-economic variables and still higher
for variables pertaining to household characteristics, and particularly housing conditions.

Table 6F.(5) presents the results from two more systematic comparative studies on the same topic, covering a common
set of variables from similar fertility surveys in a number of developing countries. The values shown are averaged over
sets of variables in the same substantive group.

The top panel shows some results from the World Fertility Survey. In this panel, median rather than mean values
for rohs over groups of variables are shown, since the medians are less affected by extreme values in the computed
results.

The middle panel of Table 6F.(5) shows a similar set of results from the Demographic and Hcallh Surveys owering
a number of developing countries. (See Tables 4A.(3) and (4) for names of the countries and variables included in
this table.) The results for rohs, averaged over countries for groups of variables, are remarkably similar for the two
sets, despite the differences beiwecn them in terms of the countries covered, sample designs, and to some extent, the
actual variables covered. This is summarised in the bottom panel of the table.
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6.5 Decomposition of the Design Effect

TABLE 6F.(4). A comparison of defts for different types of variables.

Comparison of |<dcfT's Tor a selection of characteristics for Great Britain, the Greater London

Head of household :
is chronic sick
is working

Single-person household

Household has no car

Household's accommodation:
Pre-1919 building
Owner-occupied
Has a fixed bath
Has an inside lavatory
Has fixed central healing
Is a whole detached house

Council area and Scotland

Great Britain

1.31
1.29
1.15

1.57

2.25
2.01
1.92
2.07
1.72
1.91

I'detT

G. L. C.

1,37
1.27
1.28

1.53

2.22
2.03
1.44
1.90
1.67
2.69

Scotland

1.24
1.19
0.78

1.77

1.38
1.99
1.18
1.40
1.07
1.55
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6 Dala Reduction and Modelling

The Effect of Cl aster Sizes

Table 6F.(6) shows the effect of size and nature of the PSUs on roh values. In practical design work, an important
issue concerns the choice of the number of stages in which the sample should be selected. In many situations, the
frame defines some 'basic' area units which can be used for sample selection and organisation of fieldwork, and the
issue is whether such units should be selected directly as the PSUs or clustered further by the introduction of higher
stages (International Statistical Institute, 1975). The type of units which form the PSUs will vary greatly depending
on how this decision is taken. In this example, the effect of the type of units is considered by computing sampling
errors by taking three entirely different types of units as the PSUs in the same survey, using the methodology
described in Section 5.5: (i) very large units with an average size of 100,000 households; (ii) large units of average
size 5,000 households; and (iii) compact units of average size around 250 households each. This gave three designs:

[1] A four stage design with (i) as PSUs, (ii) as SSUs, (iii) as the ultimate area units, followed by the
sampling of households;

[2] a three stage design with (ii) as PSUs and (iii) as SSUs; and
[3] a two stage design with (iii) as PSUs.

The b values for the three designs were around 84, 42 and 14 respectively. The table shows the computed deft and

roh averaged over a number of variables. Clearly roh declines as the si/e of the PSUs increases. Actually the real
intraclass correlations differ much more markedly between the three types of units than reflected by the figures in
the table. This is because of heavy clustering of the subsamplcs within PSUs in case (i), and also to some extent in
case fi i )-

TABLE 6F.(6). Dcfts and rohs in designs
with different types and sizes of units

Design
b-bar
deft
roh

[1]
84
1.66
0.021

[2]
«2
1.55
0.034

[3]
H
1.39
0.072

The Method of Subsampling within PSUs.

Kalton (1979) gives the following example illustrating the impact of the method of subsampling with PSUs.

"Two British surveys employed similar sample designs at the early stages, boih taking stratified PPS samples of
local authority areas at the first stage with similar stratification factors, and PPS selections of two wards per
selected area at the second stage. In the first survey a systematic sample of electors was then drawn throughout
each selected ward while in the second survey a further stage of clustering was employed, taking 10 electors by
means of a 1 in 12 systematic sample from a random start with each ward. Both surveys collected data on
respondents' terminal ages of education. For the first survey, for the proportion of respondents finishing their
education at 16 or under, the estimated average intraclass correlation within strata was 0.04; for the second survey,
for the proportion finishing their education at 15, it was 0.26."

The explanation for the very much higher degree of homogeneity in the second survey lies mainly in the compactness
of subsampling within PSUs.
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6,6 Modelling Sampling Errors for Subclases

6.6 MODELLING SAMPLING ERRORS FOR SUBCLASSES

6.6.1 REQUIREMENTS

This section describes how, for a given substantive variable or group of similar variables, standard errors over diverse
subclasses of interest may be related to the more readily computed errors with the total sample as the base.
Establishing such relationships is one of the primary objectives of modelling sampling errors in large-scale
multipurpose surveys. The measures deft and roh provide empirically useful means of achieving this.

Several important points should be noied in relation to subclass sampling errors.

(1) National surveys are frequently required to provide separate results for different geographical domains of the
country, which may differ in population characteristics and sample design. For each domain the results are usually
required in full detail for numerous cross-classifications of the population elements. Full-scale computation of
sampling errors is difficult for every domain because of the volume of the work involved. Also the results for
individual domains are subject to greater instability because of the smaller number of PSUs selected in individual
domain samples. It is therefore most useful to be able to express domain sampling errors (sej in terms of total
sample errors (sec).

(2) In addition, many subclasses of interest are formed by crossclassificalions in terms of individual characteristics
of households or persons (Section 4.3.2). Such subclasses may be more or less uniformly distributed over the
population. In so far as any subclasses are evenly spread over sample clusters, the effective cluster sizes go down
roughly in proportion to subclass size. This lends to attenuate the cffecis of clustering and stratification on the
magnitude of the sampling error, thereby requiring a different type of modelling than that for geographic
domains (1).

(3) In practice of course, subclasses are rarely uniformly distributed. Asa result coefficients of variation of effective
cluster sizes tend to be higher for subclasses than for the total sample where these variations are more readily
controlled by the design. The resulting increase in error variance needs to be taken into account. Jncidently, this
also tends lo increase the bias in ratio estimation for subclasses.

(4) The modelling of subclass and domain errors in terms of total sample errors should involve parameters which
are readily available or estimated. Simple models have the advantage of practicality, but sometimes they are
inadequate for providing the required degree of accuracy. In practice a compromise is required between the
requirements of simplicity and accuracy. One should seek the simplest model which meets the minimum acceptable
standards of accuracy; any complexity should be enterlained only if il is clearly juslified and unavoidable in the
light of the objectives for which the information on sampling errors is produced.

(5) In addition lo subclasses, sampling'errors are also required for subclass differences and other more complex
measures of relationship. This modelling is related lo lhal for subclass sampling errors will be considered in
Scclion 6.7.
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6 Dala Reduction and Modelling

6.6.2 THE BASIC MODEL

In discussing the relationship, for a given variable or a set of similar variables, of the sampling error for geographical
domains or other subclasses to the error estimated with the total sample as the base, the basic model is obtained by
putting together (6.6) and (6.8):

where

/ I r \1

- 1 , (6-14)

and n is the sample size, s: the population variance and Dw
2 the effect of weights on the variance, for the total sample

or some other base such as a particular domain or subclass.

The firsl factor in (6.13) is the SRS variance (s2/n), modified by the effect of weighting as described in Section 5.3.
The second factor (in square brackets) is the design effect, apart from the effect of weighting. Of course, d2 can also
be written in terms of the average cluster sizes (with or without the modification (6.11)) and roh values as

- \).roh

Similar expressions apply for the total sample and any particular domain or subclasses. The relationship between their
variances is determined by how the various components (namely n, s:, Dw

2, deft2, cluster size, and roh) relate as we
move from the total sample to particular domains or subclasses. In the following subsections, some specific situations
arc considered in detail.

6.6.3 SAMPLING ERRORS FOR GEOGRAPHICAL DOMAINS

The objective here is to sketch out some specific models which have been found useful in practice. Several situations
may be distinguished.

(1) If the nature of the population and the sample design are similar across different domains, one may begin with
the assumption that deft and population variance (s:) are also similar, thus making the standard error of a given
statistic inversely proportional to the square-root of the corresponding sample size:

(6.16)

where subscript g refers to a particular geographical domain and l to the total sample.
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6.6 Modelling Sampling Errors for Subclasses

(2) When the size of the estimate y differs significantly by domain, it is often more reasonable to assume thai the

coefficient of variation s/y rather than standard deviation (s) is constant across domains. This implies that (6.13)

applies in terms of relative errors

rseg = rse
n (6.16-)

It is possible to incorporate more complicated forms of variation of s (or cv) with y, but in many situations it is not

worthwhile to do so. For a proportion (p) in any case, it is possible to incorporate the ratio of domain to total
population standard deviation by introducing on the right hand side of (6.13) the factor

Again this factor tends to be close to 1.0 except for large differences in p - which do not usually occur across
geographical domains of the same population.

(3) Usually it is much more important to incorporate into (6.13) the effect of differences in domain and total sample
dcfts. Referring to model (6.8), these may arise due to (i) differences in the effect of weighting; (ii) differences in the
cluster sizes; and (iii) differences in other aspects of the design which affect roh. All these differences can be
important. For instance, weights due to disproportionate allocation are often introduced across rather than within
domains (eg oversampling of urban areas but self-weighting samples within urban and rural areas separately); this
would make all Dg = 1 but D, > 1. (Dg and Dt refer to the loss due to weighting (Dw) for a domain, g, and for the
total sample, i, respectively.) Similarly there are often good reasons to choose markedly differing designs and sample
takes in urban and rural areas. The relation between the design effects follows from (6.13) as:

-!]/(*'-1) «A,
——— —— = —— = c«'•< T i/ f_ ' t \ mh[(defijDf-\-\l(b',-\) roh

say

The b1 may be simply the mean cluster size, or the modified version (6.11) if those sizes vary significantly within
and across domains. Factors like ff and D6 are easily obtained for all (usually a small number of) domains as they
are roughly independent of the variables concerned. The roh values depend on the variable concerned, but the ratio
(rohg/roh,) can be expected to be similar for different variables, all subject to the same differences in domain designs.
This suggests the following simple model. The model is to compute the left hand side of (6.17) for each variable in
a set, and take its average (say cg; mean or median) as an estimate of the overall value of the ratio (roiyrohj
applicable to all variables in the set. Using this common cg, (6.15) can be applied in reverse to obtain the modelled
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6 Dala Reduction and Modelling

value of deftg from deftt for any particular variable. The relationship may be expressed simply as a set of predicted
deftE versus deft, graphs, one for each domain. Finally the 'predicted' ratio (defydeft,) can be introduced into the right
hand side of (6.16) or (6.16') to incorporate into the model the effect of differences in domain and total sample defts.

A cruder but more robust alternative to (6.17) is to seek a relationship in terms of the averaged ratio of defts, in
place of the generally less stable roh values:

= c , (6-17')

where cg is a constant for a given domain, an averaged value of the ratio of the domain to total sample défis for
diverse variables.

6.6.4 SAMPLING ERRORS FOR DISTRIBUTED SUBCLASSES

There are two major opposing factors to be considered as we move from the total sample to a subclass distributed
across the population: (i) Variance is increased in proportion to the reduction in the effective sample size,
(ii) However, variance is reduced since the design effect also goes down as a result of the reduction in the effective
cluster sizes. In addition, (iii) subclasses may also differ from the total population in terms of their population
variances (or cv's). Factors (i) and (iii) affect the SRS variance and are discussed first briefly. Factor (ii) concerns the
total sample and subclass défis, and requires more detailed consideration.

Sample Si/x:

The effect of the sample size is large and straightforward: variance increasing as (l/ms), where ms is the size of the
subclass as a proportion of the total sample. The model can be made more elaborate by incorporating the effect of
differences between subclasses in the population variances and sizes of the estimates involved, if such differences are
found to be sufficiently important.

Population Variance (or Coefficient of Variation, cv)

As in the case of many geographical domains, it is often reasonable to assume that for a given variable or
characteristic, the coefficient of variation remains fairly stable across distributed subclasses as well. Generally however,
variations in cv's are more likely to be important in the case of subclasses. This is because characteristics defining
distributed classes arc often closely related to the substantive variables of interest. For example, the patterns of
household consumption (and their variability) are related to household size and demographic composition which form
common classifications (subclasses) in the tabulation and analysis of survey data. Similarly, labour force, fertility and
many other variables are closely related to age-sex classifications. As a result, within any classification category
(subclass), variables related to the classifier tend to have lower cv values.
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6.6 Modelling Sampling Errors for Subclasses

Subclass Design Effects

The major impact of moving from the total sample to subclasses is to reduce the effective cluster size, thus reducing
deft in accordance with equation (5.15). For subclasses distributed over most sample areas, the effective cluster size
declines in proportion to size of the subclass:

bs = b,.m¿ ms = -1
n,

where m, is the size of the subclass as a proportion of the total sample, subscript s refers to quantities for a subclass
and t to the corresponding quantities for the total sample. For very small subclasses, deft values may approach 1.0
except for the effect of random weights (Section 5.3) which tends to persist across variables and subclasses
independently of other aspects of the design. By introducing the notation

d2 = (defilD)z-l; m, = njn,; bt = bl.mi (6-18)

where 'D' refers to the effect of weighting on deft, the basic model can be written as

d. b.-l roh.
d] b-l roh.

(6.19)

The main assumption to consider is the relationship between subclass and total sample roh values.

Often, the type of units and methods of subsampling are essentially the same whether we consider the total sample
or reasonably distributed subclasses - making their roh values similar for a given variable. The simplest model is to
assume rohs and roh, to be the same; with the added assumption that the subclass and the cluster sizes are not loo
small, we obtain for cross-classes:

= L = m (6.20)
>

It has been found that the decline in deft, with decreasing subclass size (ms) tends to be less rapid in practice than
that implied by the above. The main source of this effect is that subclasses are hardly ever uniformly distributed across
sample clusters, making cluster sizes more variable for subclasses than they are for the whole sample. This results in
increased subclass deft, above that given by (6.2Ü), which can be modelled in several ways.
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6 Dala Rcduclion and Modelling

Model [1]
One model to account for the higher subclass deft than implied by (6.20) is to assume that rohs > roh,. A simple

-• approximalion has been to assume that the effect can be taken into account reasonably well by taking rohs to be
higher than roh, for a given variable by some common factor k greater than 1.0, giving

d]

Factor k may be determined empirically by fi l l ing the model to computed results for subclasses. In principle it is
possible to determine different values of k for different groups of variable and/or subclasses. From a large set of
computations Kish et al (1976) have suggested a value k = 1.2 for general use.

Model [2]
Alternatively, or in addition, one may also incorporate the effect of increased variability in cluster sizes as we move
from the total sample to subclasses, ie replace the simple average of cluster sizes by the modified quantity

b1 = b.[l + cv(b)2} (6-22)

reflecting the variability in cluster si/es (Section 6.5.2). The effect of this modification is similar to assuming k>l
as in the previous case.

Model [3]
Another proposal has been to argue tha t (6.20) as an approximation to (6.19) represents one extreme (namely thai
of a pure cross-class), while ihe other extreme is represented by completely segregated classes (like geographical
domains) for which it is reasonable to assume that deft, is similar to deft,, giving

Hence, ihe general form for classes which are ncilher completely separated nor distributed entirely uniformly, may
be wrilten as

d1

— = m,B; Ckasl (6-23)

wilh the parameter a to be empirically determined for different types of subclasses, expected to be in the range
(0-1), with values at ihe upper end corresponding 10 cross-classes and at the lower end to highly segregated or
geographical classes.
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6.6 Modelling Sampling Errors for Subclasses

The last mentioned model has been developed and tested on the basis of sampling errors computed for different types
of variables over many subclasses in a number of surveys by Vcrma et al (1980). It was found that a values were
generally larger (around 0.7 to 1.0) for well-distributed demographic classes, but smaller (around 0.4-0.7) for the less
well-distributed socioeconomic classes. In a similar study (Aliaga and Verma, 1991), the overall value of a for age
groups (which are practically true cross-classes) was found lo be close to 1 (=0.97), with the subclass results closely
predicted (R: = 0.7S) by (6.23).

Model [3] has the advantage over model [1] in that it satisfies the boundary condition deft, = deft( when m,
approaches ] (total sample) irrespective of the value of parameter a; and over model [2] in that it includes an
empirically determined parameter which can lake account of the results of actual computation for different types of
subclasses. In common with other models, it of course assumes that for a given degree of 'cross-classedncss' the
substantive nature of the variable as well as of the characteristic defining the subclass need not be considered. This
however is most unlikely to be the case, and thus it would be more appropriate to estimate a. separately for similar
groups of variables within subclass groups of similar size and cross-classed ness wi th in each survey.

Relationship in terms of standard errors

The various ideas discussed in this section can be brought together to model actual variances or standard enors for
domains and subclasses in terms of the same for the total sample. This is done by modelling ihe various components
of the basic expression (6.13) on the basis of appropriate assumptions. For example, assuming that in moving from
the total sample to a subclass, the population variance s2 and the effect of weighting Dw

2 remain essentially
unchanged, and using model [3] to relate the design effects, we can express the total sample (t) and subclass (s)
variances as follows.

2 [ S ,se. = \—.l (6.24)

In the expression on the extreme right, the factor (L/ms) is the increase in SRS variance due to the reduced sample
size from nt to n^m^n^ and the last factor is the compensatory effect of reduced design effect.

For the special case of a true cross-class (a = l), the above becomes

se. (6.25)
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6 Dala Reduction and Modelling

ILLUSTRATION 6G PATTERNS OF VARIATION OF SUBCLASS DEFTS

Défis for geographical domains

As an application of model (6.17), Table 6G.(1) has been constructed from the results of a survey in Turkey (Turkey
1980; the results here arc taken from Verma 1982). The sample was selected from eight geographical domains defined
in terms of locality size varying from large metropolitan areas (domain 1) to small villages (domain 8). In domains
(l)-(5), the sample was selected in three stages: wards wiih PPS as PSUs; two blocks per ward as SSUs; and finally
a self-weighting sample of households. The computed and averaged cg values varied from 0.4 to 1.5 across the domains
corresponding to a range of around 1.20 to 1.65 for the overall averaged deftg values.

The generally increasing values of cg from domain (1) to domain (5) reflect the effect of increasing compactness of
the sampling units (decreasing ward size with decreasing size of the locality). In rural domains (6) - (8), the sample
was selected in two stages: selection of villages, following by sampling of households within selected villages. Villages
were selected with constant probability - rather than with PPS - within each domain (village size group) because no
reliable measures of size were available. The higher cg values in particular for domains (6) and (8) reflect the
variability in cluster sizes as a result of this selection procedure. For reference, deftg values averaged over 27
substantive variables for which sampling errors were computed arc also shown in the table. The table also provides
information of goodness of fit of the model in this particular example, and compares some predicted and actually
computed values. In applying the model, it was assumed that population variance varied as equation (5.5) for
proportions and proportionally to y for means (Section 6.4). The agreement between the predicted and computed
standard errors by domain is generally good.

Table 6G.(2) provides an example of defts from the total sample, geographical domains and some distributed
subclasses from a number of fer t i l i ty surveys, reference to which has already been made in other illustrations. The
deft values have been averaged over groups of s imi la r variables. In several of the countries shown, lower defts found
in the urban sector reflect the use of smaller cluster sizes in comparison wiih rural areas. The same effect is seen
more markedly when we consider cross-classes such as age groups. For small subclasses deft values tend to 1.0 as
implied by model (6.23). However, some differences remain by type of variable. More importantly, for non-self
weighting samples (such as Indonesia, Bangladesh, Sri Lanka), the effect ol weighting persists even for very small
subclasses, as implied in model (6.8).

Table 6G.(3) provides an i l lustrat ion from one of a series of in-depth fertil i ty surveys conducted in various provinces
and municipalities of China during 1984-86 (China 1986). In the survey shown from the Shaanxi Province, the sample
was heavily clustered with five sampling stages, with 29 sample counties as the PSUs, and around 4,500 women from
6,000 households as the ult imate units. The sample was self-weighting. A model of the form (6.23) was fitted, wiih
a = 0.6 as ihe empirically determined parameter estimated from actual compulations over a wide range of subclasses.
The top panel of the table shows the variation of deft by subclass size for a number of variables. Combining this
model wiih ihe assumption that population variance is ihe same in different subclasses for a given variable (cq. 6.24),
ihe lower panel shows ihe predicted variation of standard error by subclass size for different variables.
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6 6 Modelling Sampling Errors for Subclasses

TABLE 6G.(1). Variation of averaged défis across geographical domains.

Comparison of (a) computed and (b) predicted standard
the Turkish Fertility Survey

Domain
Domain size (ns)
Cluster size. D.
No. of clusters as

Averagedefti"
Estimated parameter c,
Goodness of fit, Rs'

Variable
Age at first marriage
(a)
(b)
Children ever born
(a)
(b)
Proportion who know
of pill
(a)
(b)
Proportion currently
using contraception
(a)
(b)

Metro-
politan

648
19.1
34

1.21
0.39
0.11

0.190
0.157

0.111
0.114

0.008
O.U11

0.018
0.020

Large Medium
cities cities

697 350
19.4 21.9

36 16

1.32 1.57
0.64 1.25
0.26 0.37

0.170 0.247
0.171 0.283

0.111 0.215
0.121 0.207

0.011 0.031
0.016 U.029

0.020 0.038
0.020 0.032

Small
cities

318
22.7

14

1.33
0.64
0.28

0.238
0.242

0.241
0.196

0.029
0.028

0.024
0.026

Towns

628
2U.3

31

1.50
1.05
0.19

0.221
0.190

0.178
0.165

0.026
0.026

0.032
0.022

errors lor geographic domains in

Large
villages

497
19.1
26

1.65
1.47
056

0.211
0.233

0.158
0.213

0.029
0.036

0.028
0.023

Medium
villages

734
21.6

34

L.47
0.98
0.22

0.148
0.170

0.102
0.162

0.030
0.028

0.016
0.015

Small Total
villages

559 4431
24.3 20.7

23 214

1.66 1.48
1.48
0.29

0.218 0.072
0.219

0.247 0.060
0.204

0.040 0.010
0.039

0,014 0.008
0.014

Source: Haceteppe Ins t i tu te of Population Studies (1980)
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6.6 Modelling Sampling Errors for Subclasses

TABLE 6G.(3). Standard errors and defts as functions of subclass size.

(Source: China, 1986.)

Variation of deft by subclass size

sample s ize of the. subclass:

Variable:

reported best age at marriage

lived with parents after marriage*

number of children desired

mean age at first marriage
used contra before last pregnancy*
mean births in past 5 years

mean no. of children ever-born

births in first 5 yrs of marriage

p wanting to have more children*

3001-

3500

3.67

2.98

2.32
2.23
1.75

1.57

1.37
1.28
1.19

2501-
3000

3.60

2.90

2.24

2.15
1.64

1.52

1.34

1.26

1.18

2001-
2500

3.42

2.74

2.14
2.06
1.57
1.47

1.32
1.24
1.15

1501-

2000

3.22

2.59

2.04

1.96
1.64
1.42

1.27

1.21
1.14

1001-

1500

2.98

2.41

1.91
1.84
1.49
1.36
1.23
1.17

1.12

701-
1000

2.67

2.18

1.75
1.69
1.40
1.30

1.19

1.14

1.09

501-

700

2.44

2.01

1.63
1.59
1.33
1.25
1.16

1.12
1.08

301-

500

2.45

1.86

1.54
1.50
1.28
1.20

1.13

1.09

1.06

201-

300

1.98

1.68

1.42
1.38
1.21
1.15
1.09
1.07

1.04

101-

200

1.82

1.56

1.34

1.31
1.17
1.14

1.08
1.05
1.03

<100

1.59

1.40

1.23
1.21
1.12
1.09

1.05

1.04

1.02

Variation of standard error by subclass size

reported best age at marriage

lived with parents after marriage*

number of children desired

mean age at first marriage

used contra before last pregnancy*

mean births in past 5 years

mean no. of children ever-born

births in first 5 yrs of marriage

wanting to have more children*

0.12
2.04
0.04
0.10

1.47

0.02
0.04
0.02
0.86

0.13

2.12
0.04
0.11
1.53

0.02
0.04
0.02
0.94

0.13
2.23
0.05
0.11
1.61

0.02
0.05
0.02
1.01

0.14

2.34
0.05

0.12
1.74

0.03
0.05
0.03
1.11

0.15

2.51
0.05
0.13
1.90

0.03
0.06
0.03
1.26

0.16

2.79
0.06
0.15
2.18

0.03
0.07
0.04
1.31

0.18

3.07
0.07
0.17
2.49
0.04

0.08
0.04
1.78

0.20

3.37
0.07

0.18

2.81
0.04
0.09
0.05
2.08

0.22

3.92
0.09

0.22
3.44

0.05
0.11
0.06
2.64

0.25

4.46
0.10

0.25
4.07

0.06
0.14
0.07
3.44

0.31
5.62
0.13
0.33
5.49
0.09
0.18
0.10
4.48

proportion
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6 Dala Reduction and Modelling

6.7 SAMPLING ERRORS FOR SUBCLASS DIFFERENCES AND OTHER COMPLEX
STATISTICS

Subclass Differences

The basic model for the variance of ihc difference of two subclass means, v(r-r'), may be expressed as follows:

[v.M^d-')] ¿ v<r-r')

The first expression on the left is the variance of the difference assuming independent simple random sampling - ie
disregarding design effect, but also any covariance between the classes. The last expression on the right is the sum
of the subclass variances, assuming fu l l subclass défis but no covariance. The actual variance for the subclass difference
should be somewhere between these two limits. The reduction in variance due to the presence of correlation between
subclasses which come from ihe same sample of primary uni t s may be summarised by introducing the factor (1-R),
where R is a synthet ic coefficient of covariance in the comparison of subclasses. By virtue of the definition of the
various terms, ihe following set of equalities may be wr i t t en :

(6.26)

where deft, is the common or averaged value of the design effect for the subclasses being compared. The value of R
can be estimated from actual computat ion of var(r) , var(r') and var(r-r') for a set of s imilar subclasses, and then used
as a basis to relate these quant i t ies for other subclasses not covered in the ini t ia l computations.

Some empirical results on the values of R encountered in household surveys are noted below. The- data in Table.
6H.(1) are from the Bri t ish General Household Survey (Kalion and Blundcn 1973). Note that ihe-corrclaiions are.
much larger for accommodation characteristics than for household characteristics. The former are also the
characicrisiics with large design effects. This is expected because both défis and R arc determined by ihe common
effect of clustering for subclasses coming from the same PSUs. Kish (1968) reports an average value R = 0.16 from
a series of surveys concerning consumer atiitudes. Verma et al (1980) repon values which showed systematic
differences according 10 the nature of ihe subclasses being compared. For well-dislributed demographic classes (such
as age and sex groups), R values for diverse variables and samples tended 10 be in ihe range 0.15-0.30; while for the
less well distributed socioeconomic classes (groups by occupation, level of education, race or ethniciiy, eic), ihe values
were generally much lower, mostly in the range 0.05-0.15.
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6 Data Reduction and Modelling

Equation (6.26) can be used in various, slightly different, ways to model sampling errors for differences.

(1) One way is to use it to estimate R from v(r), v(r') and v(r-r') computed for a large number of statistics; average
these estimates over appropriately defined groups of statistics; and then use the averaged R in reverse to predict
v(r-r') from v(r) and v(r') using equation (6.26).

(2) On the assumption that deft, values are similar for the two subclasses being compared, (6.26) gives

= (\-R).defi}.

With R estimated as in (1), the above equation may be used to predict defld for the difference from the (averaged)
defts for (he two subclasses, which can then be used to predict v(r-r') from vu(r) and vn(r') using (6.26).

(3) A particularly convenient approach is to seek for var(r-r') a model of exactly the same form as developed above
for subclass variances. Assuming that population variance for the two subclasses is similar, we can write (6.26')
in the form

v(r-r>) < .D,2.
n

(6-27)
n.

where nd is half the harmonic mean of the two subclass sizes say nd and nh

n, = -ÜÍÍ!*-. (6.28;

Dl is the effect of weighting which is common to all estimates whether concerning the total sample, subclasses or
subclass differences (assuming cross-classes); and deft, is the total sample design effect for a given variable. Here
the approximation made is:

b,-1

Even for large subclasses, the range implied in (6.27) is usually quite narrow. For instance for deft,: = 2,
D, = 1, and n_ = nb = 0.2.n, (each subclass forming 20% of the total sample), the range in (6.27) becomes

s2 , s1

10.— < v(r-r') < 12.—.
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6.7 Sampling Errors for Subclass Differences and Olher Complex Sialistics

Hence it appears reasonable lo lake v(r-r') in the middle of this range, giving

(6.29)

The remarkable thing about (6.29) is that it is exactly in the same form as (6.25) for subclasses, except for the
replacement of subclass size ns by nd defined in (6.28). This means any model developed for individual subclasses can
be extended to subclass differences as well. Table 7F.(3) in Chapter 7 provides an example of a relationship of this
form presented in a tabular form. In practical applications, it is always useful to allow for some empirical determined
parameter(s) to improve goodness of fit of the model with actual computations. For instance, one may modify (6.28),
which defines the 'effective sample size' to be used in (6.24) or (6.25) for a subclass difference, to

P-
n.n'«•"*

+ n.

where ñ is an empirically determined factor, expected to be close to 1.0.

More Complex Statistics

Subclass differences represent a basic measure of relation between variables. Empirical findings about them lead to
conjectures about design effects for other statistics that measure relations, such as regression coefficients. On the basis
of semi-empirical considerations, Kish and Frankel (1974) conclude the following in relation to deft for an analytical
statistic, say z, such as a correlation or regression coefficient:

1. deft(z)>l. In general, design effects for complex statistics arc greater than unity. Hence standard errors based

on simple random sample assumptions lend to underestimate the standard error for complex statistics.

2. deft(z)<deftíy). Design effects for complex statistics tend to be less than those for means, for a given variable and

sample or subclass. The latter are more easily computed and tend to provide 'safe' overestimates for the former.

3. deft(z) is related to defi(y). For variables with high défis for means, values ofdefl(z) also tend to be high.

4. defi(z) lends to resemble deft(ya-y¿), the design effect for differences between means.

5. deft(i) lends lo have measurable regularities for differenl siatistics.

Based on ihe above, ihe auihors propose a simple model

with deft(y)>l; and k (0 <k <1) being specific lo a parlicular variable, type of statistic, and sample or sample

subclass.
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PRESENTATION AND USE OF INFORMATION
ON SAMPLING ERRORS

As has been emphasised earlier, even when extensive computations of sampling errors can be undertaken, their
presentation in a suitable form remains a problem in large-scale, multi-purpose surveys. Obviously the presentation
with each and every survey estimate of its associated sampling error is out of Ihe question, since that would double
the size of the publication. Nor would such undigested presentation be useful, since results of individual computations
are not always reliable, given the variability of sampling error estimates themselves.

This chapter is aimed at providing general guidelines on presentation of information on sampling errors for different
types of users and uses of the survey results. Perhaps the most frui t ful means to do so is to consider a number of
illustrations, as presented later in this chapter. The reader's attention may be drawn to a very useful publication on
the topic which also provides a number of illustrations, some of which will be referred to below. This is Gonzalez
et al (1975), an earlier version of which is available as United States (1974).



~¡ Presentation and Use of Information on Sampling Errors

7.1 SOME BASIC PRINCIPLES

Certain basic principles need to be observed in choosing the appropriate mode of presentation of information on
sampling errors:

(1) Sampling errors must be presented in the context of the total survey error. The user should be made aware
of the fact that sampling variability is just one, and not always the most significant, component of the total error.

(2) The mode of presentation and the degree of detail given should suit the specific needs of particular
categories of users. There are several types of users interested in the survey results: the general, often non--
statistical user wi th no special interest or expertise in survey methodology; the substantive analyst engaged in
primary or secondary survey research; and the sampling statistician concerned with survey design and evaluation.
Each type of user has his or her own specific requirements for information on sampling errors.

(3) The form of presentation should be convenient and relevant to the needs of particular categories of users,
and should be so as to encourage proper use and interpretation of the information. A problem in many surveys
is tha t the information on sampling errors, even when available, is not properly utilised.

(4) It should be remembered that , despite its importance, information on sampling errors is necessarily only
secondary to the main, substantive results of any survey. Therefore it is important to ensure that the information
on sampling errors does not c lut ter the presentation of substantive results of the survey. The objective of providing
this information is to elucidate the limits to the reliabil i ty of the substantive results and not to obscure the results.

(5) The accuracy wi th which information on sampling errors is required depends on the specific uses to be
made of the information. For many purposes approximate values or indication of the overall patterns and
magnitudes will suffice. Also in the l ight of (3) and (4), it is often better to provide approximate information which
is more likely to be applied than to provide exact information which is hard to use.

(6) For any category of users, it is important to summarise the information and provide sufficient explanation
to faci l i ta te correct interpretation of the results. Users not directly involved in the design and execution of the
survey cannot be expected to be familiar wilh its details and peculiarities.

(7) The only basis for proper summarisation and concise presentation of the mass of information on sampling
errors is to analyse thoroughly the pattern of results uti l ising empirical and theoretical models, such as of the type
discussed in the previous chapter.
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7.2 REQUIREMENTS OF DIFFERENT CATEGORIES OF USERS

7.2.1 THE GENERAL USER OF SURVEY RESULTS

Several categories of users may be distinguished. The first is the general user, perhaps with no special interest or
expertise in survey methodology or substantive research, who is interested in using the survey results for drawing
broad conclusions and taking decisions. For this type of user, the information on sampling variability should indicate
the overall quality of the results of the survey and their place within ihe wider body of related statistical information.
More specifically, it should indicate how substantively significant conclusions to be drawn from the survey may be
affected by the uncertainties due to sampling variability.

The focus should be on how information on sampling errors (or indeed on any type of survey errors) affects the
interpretation of substantively significant results of the survey. Sampling error should be placed in the context of total
survey error, and viewed as the lower l imit of that error. It should be indicated how sampling error becomes the
critical component of total error for small subclasses and subclass differences, and how its magnitude determines the
detail to which the survey data may be meaningfully cross-classified.

The text of a report presenting sampling error data should include a statement that defines and interprets basic terms
such as 'sampling error', 'standard error' and 'confidence interval', etc. These concepts should be illustrated by
numerical examples. Gonzalcs el al (1975) provide examples of an introductory text which may be used for this
purpose. See also Illustration 7A below.

In view of the above, it is recommended that information of sampling errors in general survey reports should include
al least the following explanatory malerial:

(i) a description of main sources of non-sampling errors, including coverage, non-response, response and
processing errors;

(ii) definiiion and inierpretaiion of the terms used in ihe presentation of sampling errors;

(iii) summary information on magnitude of sampling error for the more important estimates resulting
from the survey; and

(iv) caution, and specific guidelines to the extent possible, on the limits in the degree of detail to which
the survey results may be classified due to the presence of sampling errors. This is most important
because of the constant pressure to classify the survey data in more and more detail.

For the general user, the most useful form of presentation probably is to accompany all important estimates discussed
in the text with their respective sampling error, specially where the error may affect the substantive conclusions to
be drawn from the surveys. Sampling errors may be presented in different forms, for example:
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7 Prescnlaiion and Use of Informalion on Sampling Errors

. as absolute values of the standard error (se);

. as relative values, standard error divided by the estimate (rse);

. in the form of probability or confidence intervals.

The preference between absolute and relative forms will depend upon the nature of the estimate. The same value of
standard error may be applicable to a number of estimates when expressed in relative terms; as for example for
aggregates that vary in size or in units of measurement. In such cases, it is economical as well as more illuminating
for the reader to present relative standard errors.

However, absolute values of the standard error (se) are sometimes easier for the reader to relate to the estimate,
especially in the case of proportions, percentages and rates. In any event, it is important to avoid ambiguity in
presenting standard errors for percentages: clear distinction needs to be made between the absolute number of
percentage points and the concept of relative error in percentage terms. For example for a percentage p = 40% and
standard error se = 2%, the relative error is 5%, and should not be confused with the absolute value of the standard
error (2 per cent).

The presentation of error in the form of probability intervals requires a choice of the confidence level. Some analysts
prefer to give only the standard error (eg in parentheses following the estímale in the text, or as a separate column
in text tables), so that the user can compute whatever mult iple of standard error is appropriate for the desired
confidence interval. However, in guiding the user in the interpretation of results when issues of statistical significance
arise, it is more convenient to present the survey estimates directly in the form of confidence intervals. Since there
is no widespread agreement on the appropriate choice of confidence interval (say, 90, 95, or 99 per cent), it is
necessary

(a) to specify what confidence interval is being used, and

(b) to follow the same level throughout as far as possible in determining what is to be regarded as 'statistically
significant'.

The mosi cannon practice is to use the 95 per cent confidence interval, ie
estímale ± 2. (standard error)

though there are many examples of survey reports which use ± one standard error as the interval.

It should be pointed out that to avoid comment when the observed difference is not 'statistically significant' is not
always the appropriate solution: it may reduce the attention given to important results, or encourage an interpretation
of 'no difference', or 'no change', when the band of uncertainty is large and important differences could be present.
Furthermore, i t is possible that significant results would emerge with less detailed classification of the sample; if so,
attention should be drawn to this fact.

In many situations it is sufficient to provide only approximate information on the magnitude of the standard error.
This would be the case, for example, when se (or relative error, rse) has similar values for a number of estimates, so
that a single averaged value may suffice. Similarly, approximate values would suffice when the sampling error is
unimportant with respect to the relationship being discussed.
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7 2 Requirements of Differenl Categories of Users

In such situations a simple statement, such as 'relative error of these estimates is in the range 3-5 per cent...' may be
included in the text, text tables or footnotes. Somewhat more detailed information may be provided by indicating
different ranges of values of se or rse by different symbols, for example as follows:

.Relative standard error is under 5 per cent unless otherwise indicated.

.Relative error 5-10per cent is indicated by one asterisk*

.Relative error 10-15 per cent is indicated by two asterisks**

.Relative error >15 per cent is indicated by enclosing the estimate in parentheses ().

A simpler version of this scheme has been used in some survey reporls. To save space and improve readability, the
text or summary tables in these reporls generally do not indicate the number of sample cases on which estimates are
based. As a safeguard to the reader, something like the following system may be used to indicate the range of sample
size (rather than of the standard errors directly) for cells of the text tabulations:

.Sample size (cell frequency) > 50 unless indicated othenvise.

.If frequency 20-50, estimate enclosed in parentheses <).

.If frequency <20, estimate suppressed and replaced by an asterisk*.

It should be pointed out that the suppression of some data cells in a table because the sampling error is too large
(ie cell size loo small) is not in general a good practice. Suppressing of individual cell values prevents the user from
combining categories of ihe lable. Moreover, results which may not be stat ist ically significant due to large sampling
error may slill be meaningful, for example in the fact tha t the estimate is 'small' rather than 'large'.

7.2.2 THE SUBSTANTIVE ANALYST

The second category is thai of the substantive analyst engaged in further analysis and reporting of the results. This
type of user requires more detailed information on sampling errors. He or she may wish lo go beyond ihc lext or texi
labiés lo look at ihe deiailed tabulated data or to produce new tabulations, and will expect to find not only direct
(compuled) estimates of sampling errors for all major statistics, but also a general indication of the magnitude of
standard error to be expected for any estimate over any category of the sample. These requirements suggest:

(i) A tabular presentation of computed sampling error estimates for all important variables for ihe
total sample, for major sampling domains, and for a %'ariety of subclasses and subclass differences.

(ii) A graphical or tabular presentation of approximate standard errors (or other measures of
sampling error) for a number of variables as a function of subclass size.

(iii) Similar information for differences between subclasses.

The last two provide information in a summary form. It may be necessary to produce such summaries separately for
different types of subclasses or for different sampling domains. The objective is to summarise results from detailed
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7 Presemalion and Use of Information on Sampling Errors

computations, smooth out random variability in the computed results, and provide a basis for extrapolation to
statistics for which sampling errors have not been computed or tabulated. Comparison of the averaged or smoothed
results with those actually computed provides the user with an impression of the degree of reliability of individual
compulations and of the goodness of fit of the smoothed results.

7.2.3 THE SAMPLING STATISTICIAN

The sampling statistician is concerned with the statistical efficiency of the design adopted, compared to alternatives
which could have been adopted, or more rclevanily, that might be adopted in future surveys with similar objectives.
The type of information that is useful for sample design and evaluation includes:

(i) Detailed information on standard errors and their pattern of variation with subclass type and size.

(ii) Similar information on design effects.

(iii) Information on ron values to permit extrapolation across variables and across designs.

(iv) Information on the effect of specific features of the design, such as stratification, clustering of
ul t imate area units and of other higher stage units, departures from self-weighting, etc.

(v) More generally, information on components of the sampling error for multi-stage designs.

Examples arc given in the remainder of this chapter to i l lustrate important aspects of presentation of sampling error
information in survey reports.

7.3 ILLUSTRATIONS

ILLUSTRATION 7A AN EXAMPLE OF INTRODUCTORY STATEMENT ON
SAMPLING ERRORS FOR THE GENERAL USER OF THE
SURVEY RESULTS.

In the presentation of sampling errors it is important to provide a clear and concise description of meanings of the
terms used, the measures presented, and how the information may be interpreted and used.

Relationship to other non-sampling errors should also be pointed out. The details to be given will of course vary
depending upon the specific situation and requirements. There are many fine examples of the type of introductory
statements on sampling errors which may be included in survey reports; the one presented here from a survey in
Nepal is a particularly clear and concise one,
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(Illustration 7A) INTRODUCTORY STATEMENT ON SAMPLING ERRORS IN
A SURVEY REPORT: AN EXAMPLE.

The estimates in this report are obtained from a sample of about 6,000 women from the population of
Nepal. If the survey was repeated a different sample of women would be obtained, and hence the resulting
estimates would also differ. The sampling error of an estimate measures the degree to which the estimate
would vary if different samples of women were taken, in other words, the sampling error measures the
imprecision caused by limiting the enquiry to a sample of the population. An important advantage of
probability sampling is that estimates of sampling errors can be obtained from the results of the single
sample which is actually selected.

Non-sampling errors, such as mistakes in implementing the sample design, mistakes in the respondents'
answers caused by misunderstanding or memory lapse and errors in recording the data are not taken into
account in estimates of sampling error, although they certainly exist to some degree. For this reason
the estimate of sampling error should be interpreted as a lower bound for the total error of an estimate.

The measure of sampling error used in this report is the standard error (SE). For certain important
statistics in the text the estimated standard error is given in the form of a footnote indicated by one
or more asterisks (*). For example, in Section 5.1 the estimated mean number of children ever born is
5.7, with standard error 0.16.

Standard errors have the following interpretation: if non-sampling errors are ignored, then in two
samples out of three the true value lies within one standard error of the estimated value, and in
nineteen samples out of twenty the true value lies within two standard errors of the estimated value.
Accordingly an interval of +7-2 standard errors around the sample estimate nearly always contains the
true value for the population. This interval is called a 95% confidence interval, and is comnonly chosen
as giving a range of possible values for the estimated quantity consistent with the data.

In the example above, the 95% confidence interval is 5.7 t 2(0.16) = 5.38 to 6.02; that is, with 95%
confidence the total number of children ever born in the population lies between 5.4 and 6.0.

Standard errors for the differences between pairs of estimates are also given in the text, and these are
important for determining the likelihood that an observed difference is real or merely caused by sampling
variation. For example, in Section 5.3 the current fertiIity of women whose husbands have "no education"
is compared with the current fertility of women whose husbands have "some education'. For the 35-39 age
group the estimated numbers of live births in the past five years were 1.2 and 0.9 respectively, giving
an estimated difference of 0.3 children. As shown in the footnote, this difference has estimated
standard error 0.12, and so a 95% confidence interval for the difference is 0.3 •»•/- 2(0.12) a 0.06 to
0.54.

In general one can be reasonably sure that a real difference exists if the 95% confidence interval does
not include the value zero. In statistical terminology, the difference is then statistically signi fi cant
at the 53C level. On the other hand, the term "not statistically significant" is used in the text to
describe a difference with a 95% confidence interval which includes the value zero, and in such cases
the observed difference in the sample is not necessarily reflecting a difference in the population.

In the example above, the 95% confidence interval does not cover zero, so there does appear to be a
difference in the Current fertility according to husband's education for the 35-39 age group. The inter-
val (0.06 to 0.54) also implies that the magnitude of the mean difference cannot be estimated with
precision from the survey but is unlikely to be more than half a child.

(cont.)
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(Illustration 7 A, cont.)

Sampling errors in the text are derived from data presented in Table .... and Table ..... The standard
errors of estimates of 17 important variables for the whole population are given in Table .....

In addition to standard errors (SE), the following quantities are presented:

m mean or percentage value of the estimate.

n sample size.

OEFT the "design effect", a factor which compares the standard error of the actual clustered sample
with the standard error expected if the sample had been selected by simple random sampling of
individuals. That is, DEFT = SE/SR, where SR is estimated by the usual simple random sampling
formula.

S the standard deviation, defined as SR.n'". This is a measure of the variability between
individuals, and is a characteristic of the population and not of the particular sample design.

In Table ..... values of m, n, and SE are given for the same set of variables for 12 subclasses of the
population, defined by Age, Years Since Marriage, Age at Marriage, Literacy and Terai/non-Terai. The
precision of estimates for these subclasses can be obtained from this table.

More derailed sampling errors can be made available on request. However, the following general
statements can be inferred from the calculated standard errors and design effects.

(1) The standard errors for means based on the whole sample generally range between 1% and 5% of the
mean.

(2) Many observed differences are not statistically significant when necessary demographic controls
are introduced. Hence small differences should be interpreted with caution.

(3) The design effects for the whole sample are large for some variables, ranging from 1.14 to 4.19.
(For example, a design effect of 4 for a variable implies that a random sample of 1/16 the size of
the present clustered sample would achieve the same precision for that variable as that achieved by
the current sample.) This is not unexpected since-the survey design was highly clustered because of
constraints on time and travel in difficult terrain. However, these high design effects are con-
siderably reduced for estimates for subclasses, and further reduced for differences in subclass
estimates, so this should not be taken as a compelling argument against cluster sampling. The data
in those tables are of considerable interest for the design of future surveys in Nepal.
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7.3 Illuslrdlioris

ILLUSTRATION 7B UP-FRONT PRESENTATION OF ERRORS ON IMPORTANT
STATISTICS

In statistical reports aimed at the general user, it is important to bring to the readers' at tention the magnitude of
sampling error for at least the main estimates produced from the survey. A good strategy is to extract a few of the
most important figures and present them up-front , preferably as an integral part of summarisation of the survey
results. Relative standard error (ie error as percentage of the estimate) can be a particularly convenient form in the
presentation of results for totals, means and other ratios. However, in relation to percentages or proportions care
is needed, as noted earlier, to ensure that there is no confusion between errors presented in the form of absolute per
cent points, or in relative terms as percentage of the estimated value.

The series of tables accompanying this i l lustrat ion provides a wealth of information on relative errors on diverse
topics from the Indian National Sample Survey, covering consumer expenditure, land holding, employment and labour
force, assets and liabilities of households, and birth rates. These tables provide examples on the kind of important
statistics which may be presented up-front along with informat ion on their relative standard errors.
Of course the data on sampling errors presented in these examples are also of interest in their own right from a
substantive point of view: very l i l t le of such informalion is published from surveys on d i f f e ren t topics from developing
countries. Even though the actual magnitudes of errors shown are a function of the par t icular sample sizes (and
designs) involved, their relative magnitudes for different types of variables from ihe same or similar survey should
be of considerable general inlcresi to survey practitioners.

The data presented here originate from diverse sources and have been quoted here from a compilation in
India (1990).
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ILLUSTRATION 7B continued:

[3] PROPORTION OF THE POPULATION (AGED 5+) EMPLOYED, UNEMPLOYED, AND NOT IN THE LABOUR FORCE (NSS 277H ROUND)

rural
urban

employed

0.43
0.47

unemployed

5.55
2.93

not in
labour force

0.45
0.28

-----sample size--
hhs villages/

blocks
72,000 9,000
53,000 4,800

[4] BIRTH RATE IN RURAL AREAS IN FIVE STATES (NSS 19TH ROUND)

sample size
villages*

336
384
348
192
525

relative
standard

error (%)
2.77
2.57
3.44
3.64
2.03

Andhra Pradesh
Bihar
Maharashtra
Rajasthan
Uttar Pradesh

*An average of approximately 20 household selected per village.

[5] VARIABLES RELATING TO ASSETS AND LIABILITIES, ESTIMATED AT ALL-INDIA LEVEL
(NSS 37TH ROUND, DEBT AND INVESTMENT SURVEY)

Item

Proportion of households
reporting cash dues payable
cash dues payable (amount)
amount of assets
amount of land ouned
whether ouns residential building
whether owns livestock
whether owns agricultural implements
whether owns non-farm equipment
whether owns transport equipment
whether owns durable assets
all shares owned
other financial assets owned
Sample size (number of households)

1.22

2.38

--relative error--
rural urban

1.98
4.41
1.02
3.28
1.25
1.27

10.88
7.76
3.74
1.41
5.73
5.20

61,157

3.48
6.15
2.19

2.68
6.21

10.34
5.54
1.91

15.63
4.37

30,965
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7 Presentation and Use of Information on Sampling Errors

ILLUSTRATION 7C GRAPHICAL PRESENTATION OF CONFIDENCE INTERVALS

Graphical presentation of sampling error information is sometimes helpful: it can convey to the reader more directly
the magnitude of the degree of uncertainty and its impact on the estimates produced from the survey. Perhaps the
most suitable form is to show the errors in the form of confidence intervals to some appropriate level of confidence.
Illustration 7C.(1) provides an example, quoted from Gonzalez et al (1975). In comparison across subgroups in the
top diagram (labelled 'A'), it is instructive to note for instance that for certain groups the confidence intervals overlap,
indicating that the direction of the difference between them cannot be ascertained with the specified level of
confidence. The lower part ('B') shows more directly confidence intervals of comparisons. Differences statistically not
significant clearly stand out.

This type of presentation can be particularly appropriate in executive summaries or other short reports prepared for
special audiences, and generally in situations when it is important to ensure that wrong impressions formed from
(statistically) small differences are avoided.

The graphical presentation in I l lustrat ion 7C(2) has a rather diffcreni objective; it is to present a relationship (such
as between variance of individual subclasses and that of their difference) in a graphical form so that the user can read
off some required statist ic directly from the graph without going through elaborate tables of calculations. Sometimes
this form of presentation can be convenient, but perhaps less often than assumed. The kind of user who is interested
in obtaining information on sampling errors for estimates for which it cannot be presented in the report directly, is
usually quite capable of reading off and interpolating information from tables or evaluating algebraic expressions to
obtain numerical results.
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ILLUSTRATION 7C.(1). GRAPHICAL PRESENTATION OF CONFIDENCE INTERVALS.
(Source: Gonzalez el al, 1975.)

A. Percent Unemployed by Race and Sex
• 99.7%conlidenct

limits
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and over ',.

Neqrrj gnd other races
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ILLUSTRATION 7C.(2).GRAPHICAL PRESENTATION OF ERRORS OF SUMS AND DIFFERENCES.

C. Nomogram: Standard Error of Sum or Difference
Independent Samples

, +
— 10.0

— 9.0

— 8.0

I— 7.0

— 60

— 50

— 3.0

-2.0
• 1.0

— 14.0

— 13.0

-120

— 11.0

— 10.0

— 9.0

— 8.0

— 7.0

— 6.0

— 5.0

iE- 40

3.0
2.0
1.0

— 10.0

— 9.0

— ao

— 7.0

— 6.0

— 5.0

— 4.0

ir-2.0
Ë- 1.0

Instructions for Use: If x and y are two independent estímales,
then x + y and x - y are estimates of the sum and the difference,
respectively. The standard errors may be approximated by the use of this
nomogram. Locate the point on the cr, scale that corresponds lo the
standard error of x, and the point on the a, scale that corresponds to
the standard error or y. The scales may be read in any units (tenths,
thousands, millions, etc.) provided that the same unit is used on all
scales. Now connect the points by a straight line (a stretched thread
is convenient) and read the value where the line crosses the cr,-,. scale.
This is the standard error of x -t- y and x - y. For example, suppose
the standard error of x is 6,750 and the standard error of y is 4,700.
A straight line between these values on the cr, and a, scales crosses
the cr,.,. scale at about 8,230. An exact computation would have yielded
the value 8,223.



7.3 Illustrations

ILLUSTRATION 7D DISPLAYING THE MARGINS OF UNCERTAINTY WITH
RESULTS FROM INDEPENDENT REPLICATIONS

A powerful way of conveying to the user an impression of the margins of uncertainty in sample survey results is to
display side by side estimates from a number oí independent replications into which the total sample has been divided
- assuming that the sample design and implementation permits the construction of independent replicated estimates.

This method has been discussed in detail in Section 3.2, where reference to the present illustration was also made.
This form of presentation of course requires that the number of replications is small enough (or a larger number of
replications has been appropriately collapsed into a suitable number) for the ful l results from each to be displayed
in the survey report. In practice one would also l imi t such presentations to a selected subset of the most important
estimates. Some authors have criticised this form of presentation because of ihe usually very small number of
replications involved, and the possible lack of independence among the replicated estimates. The method may also
not be considered practical for multi-purpose surveys involving many variables and forms of analysis. Nevertheless,
this form of display of the margins of uncertainty is generally useful and instructive - provided of course the basic
assumptions underlying the method are satisfied in the survey design and implementation.

The illustration below is from an earlier round of the Indian National Sample Survey. (I t is due to Mahalanobis,
quoted in Zarchovich 1965, Chapter 8.) The total sample for the NSS Round 8 (1954-55) was enumerated in two
parts: one administered centrally and the other al the level of state. In the illustration the former part has been
divided into four independent replications, and the latter into eight. A set of results on variability between the sample
results on the numbers of holdings by size is shown, both between the central and state parts, and between subsamples
within each part.

With independent implementation of data collection and processing by subsample, the observed variability reflects
the effect of sampling as well as several sources of non-sampling variation. Actually in the NSS, the surveys go beyond
the concept of simple independent replication in design and implementation. Rather, the more comprehensive concept
of'interpenetrating' subsamples which can be linked between as well as within PSUs is used to control and study the
reliability of survey results more comprehensively (Lahiri, 1958). As noted in A Dictionary of Statistical Terms
(Kendall and Buckland, fourth edition 1982), interpenetrating sampling refers to the taking of two or more samples
from the same population by the same process of selection, but "the sample may or may not be drawn independently,
linked interpenetrating sampling being an example of the latter". Also, "there may be different levels of
interpénétration corresponding to different stages of a multistage sampling scheme... Generally the subsamples are
distinguished not merely by the act of separation into subsamples but by definite differences in survey or processing
features, eg when different parts are assigned to different subsamples, or one subsample is taken earlier in time than
others."

Note that the separate results from independent replications can provide only a rough indication of the conventional
measures of standard error and confidence intervals.
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7.3 Illustrations

ILLUSTRATION 7E CONCISE SUMMARIES OF STANDARD ERRORS FOR
NUMEROUS PROPORTIONS AND COUNTS IN
LARGESCALE SURVEYS.

This illustration is similar to Il lustration 6B in Chapter 6, and provides a more recent example of how a vast q u a n t i t y
of information on sampling errors may be summarised and presented in a concise manner. The main limitation of
the form of presentation is that i t is basically suited only to estimates of counts or proportions; it is more di f f icu l t
to deal wiih means and aggregate values of substantive variables. Nevertheless there are many censuses and surveys
where the statistics of interest are primarily in the form of counts or proportions.

The United States 1980 census of population involved the enumeration of a small number of items on a 100% basis,
supplemented by an approximately 20% sample of housing units and persons for more detailed information. To
expedite data release, the census sample itself was subsampled to obtain an Early Release Sample (ERS, see United
States, 1982). The ERS involved basically a two stage design: PPS systematic sampling of census EDs followed by the
selection of housing uni t s or persons. Roughly the ERS consisted of 17,000 EDs of average size around 70 persons,
from which an average of 20 persons were selected per ED; the overall sampling rate was around 1 in 62. Sampling
errors were computed for 1,120 separate estimators for each of the 89 'publication areas' into which the country had
been divided. Sampling error information was presented primarily in the form of design effects (deft) . To reduce the
amount of information to be presented, a two step data reduction procedure was employed.

(1) The 1,120 data items were aggregated into 36 groups based on subjective judgement about s imilar i ty of défis
For easy reference and use, the groups also had to be substantively homogeneous. In each publicat ion area
separately, a weighted average of computed defts for indiv idual data items was taken. Défis rather than ratios of
variances (defi:) were averaged because the former are less affected by extreme values. The weights were in
proportion lo Ihe lotal estimated count for the dala iiem concerned.

(2) Next, the 89 publicaiion areas were aggregated into 10 groups using a clustering procedure based on deft values
for certain selected populaiion characteristics relaiing 10 education, employment and income. The averaged dells
from (1) were themselves averaged over these groups, with weighis in proporiion to publicaiion area population.

These averaged values are shown in Table 7E.(2). For any panicular data item in a particular publication area, the
deft is taken to be the averaged value for its data/publicaiion area group. Standard error for the item is obiained by
multiplying this deft value by the simple random sampl ing error from Table 7E.(1). This is simply a tabulauon of the
standard error as a function of ihe populaiion base (N) of a 'publication area group', and estimaied proporiion (p)
or count (Y=p.N) of uni is wiih any specified characterises:

se(p) =
1/2

= (62.p(l-p)IH\il2

se(Y) = N.se(p) ._ . %.
N

In using Table 7E.(1), the aclual iiem or publication area group is noi relevant except for its size. Ii is ihis feature,
and ihe grouping of the publicaiion areas in Table 7E(2), which make ihis form of presentation so concise.

191



ILLUSTRATION 7E.(1). STANDARD ERRORS OF PROPORTIONS AND COUNTS ASSUMING SIMPLE
RANDOM SAMPLING.

(Source: United States, 1982.)

Unadjusted Standard Errors for Est imated Totals

Est imated '/
Total

1.000

2.000

5.000

10.000

25.000

50,000

100,000

250,000

500,000

1,000,000

5,000.000

10,000,000

100.000

250

390

540

750

1,000

1.240

-

-

-

-

-

-

500,000 1

250

390

550

700

1,210 1.

1,670 1,

2.230 2.

2.7UO 3,

3.

-

-

-

000,000

250

390

550

700

230

720

360

410

910

-

-

-

I/ Tor est dialed Luíais lanjcr llian
larger than the table
ca lcu la te the standard

11 To ta l
the U.

So (Y ) -

II

r

count of persons
S.

1 - Î\j 62 Y (1- ¡J)

Siic uf area

Size of

5.000.000

250

390

560

790

1.240

1.750

2.460

3.840

5,2110

7,040

-

-

10,000,000

Publication Area 2/

10.000.000 25,000,000

250

390

560

790

1,240 1.

1.760 I,

2,480 2.

3,090 3,

5,430 5.

7,470 7,

12.450 15,

19,

250

390

560

790

240

760

400

920

510

710

750

290

United
Sta tes

250

390

5GO

7 -JO

1.240

1.760

2.490

3.930

5,560

7.060

17,410

24,350

the standard error Is somewhat
values. The formula given below should
error.
, frillies, households or housing units

be used to

In an SUS A. Stale or

est imate uf characterist ic lota)

Note: Illustration 7E.(1) continued on next page.
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ILLUSTRATION 7E.(1) CONTINUED:

Estimíted
percentage-

2 or 98

5 or 95

LO or 90

15 or B5

20 or 80

25 or 75

30 or 60

35 or 65

50

Unadjusted Standard Errors for Estimated Percentages
(in Percentage Points)

Base of Percentaoci/

5.0CO

1.6

2.4

3.3

4.0

4 .5

4.3

5.1

5.3

5.6

r,500 10,000 25,000 50,000 100.000 250,000

1.

2.

2.

3.

3.

3.

4.

4.

4.

3 1.1 0.7 0.5 0.3 0.2

0 1.7 1.1 0.8 0.5 0.3

7 2.4 1.5 1.1 0.7 0.5

2 2.8 1.8 1.3 0.9 0.5

6 3.1 2.0 1.4 1.0 C.6

9 3.4 2.2 1.5 1.1 0.7

2 3.6 2.3 1.6 1.1 0.7

3 3.8 2.4 1.7 L .2 0.8

5 3.9 2.5 1.8 1.2 0.8

500,000

0.2

0.2

0.3

0.4

0.4

0.5

0.5

0.5

0.6

\j For a percentage and/or a base of percentage not shown in the table, the
~ formula given below may be used to ca lcu late the standard error.

Seip) • >

B • Base of

A %• p ¡100-p)

Esflnated Percentage

p • Est imated Percentage
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ILLUSTRATION 7E.(2). DESIGN EFFECTS (DEFTS) TO BE APPLIED TO 7E.(1).

ractor tu hp ADP' ied to llnad.usted Standard urrors by
uharac t pri s t ic and Publ icat ion Area r.rcuo

rhardcle'i st ic Publ icat ion Area Group

SE^S'iM rH'^f.rTERi ^TIC*.

Household Type, Si ze
¡nd Pe : at ionsh : p ...............

Mental S t a t u s ...................
N a t i v i t y and " lace of f» ir th ......
Language Spoken at Home and

Am'lity to Speak Engl ish .......
Means of Transportat ion to Work ..

(.alio-- Force S'.clus
Excludmn Jnenpl oynent .........

Uc-"k or PjMic T ranspor ta t ion
fhsihility S t a t u s ..............

W e e k s 'Jnrkprl in I0?" .............

Fjnily or Hnjjchold Inccnc .......
Unrelated Irci v i r tual Income ......
"overty S ta tus in Io?"

^over ty S t a t u s for Fani l "-s ......
R l a c k or Span ish Lf.hnr force .....
" l ack or Span ish Incone ..........
B lack or S p a n i s h Pover ty .........

IÍÜI.MN-, CHW'TF .R IST ICS

Tenure and V a c a n c y S t a t u s ........
Yea r Hcvschol^i"- ^nved

In to Unit ......................

f - t eñen f ác i l i t i e s ...............
SCi.'jge Systen and Source

of Wate r .......................
A i r Co nd 1 1 1 on nq , Kea'.lno

Equipne.it ant< U t i l i t i e s ........

Y e a r S t ruc ture Bui l t .............

S:i-ies ir, Structure ard
fasscnger [ l eva to r .............

Mor f cane S ta tus and
Selected Twnpr C o s t s ...........

r.rcss Rent .......................

1

1.0
1.0

1.0

6 ^ 4

6.0
i.3
3.1
4 . f

5 . 7
7 9

2.R
t 7

2 . 3
3.0
3.1
2 .6
£. 3

3 Í6
8. c

3 .5
10.R

i.n

3.P
6 .3
: ^

6 .4
6 .7
5 . 7

j . 7

3.0
4 . 3

2

1.0
1 0

1.0

i.n
10. C

:n. i
R.2

8.2

4 7

i. 5

5.4
s n
5.C
i.3
G.n

11. p
6.7

13. i

16.:

1.0

p. 7
11 ,0
r *>
10.4

12.7
1? 7
in. 9

7.P

4. e
6.6

3

1.0
1.0

i .O
i n
1.0

8.9
6 . 5
4 . 4
f > .8

8.9
4 5

3.9
1 Q

4 . 7
4 7
4 . 3
3. 7
5.fl

9. 1
s'. 6

5 . 2
14.8

1.0

S a

7.9

9.f,
If «v

8.9
6.8

13.2

3.9
6 . ]

4

1.0
i n

• . n
1.0
7.0

7. ft
5.0
3.7
5.5

6.B
•> 3

3 .3

3.8
3. 4
3.6
3.1
5.0

7 . 7
4 .0

10.7

1.0

4 . 7
7.8
4 . B

10.6

8.4
8.1
6.6

10.2

3.6
4 ^

5

1.0
i n

1.0
1.0
1.0
7.2

4 . 7
4 . 5
3 .2
4 . 8

5.B
7 6

3.0
? a
3 .3
3 1
3 .2
2.6
4 . 3

6.7
3.7
B.G
3 .6

11.5

1.0

1 9
6.7

10.0

7 . 7
7.0
6.3
5.0

fi.6

3.4
4 . 2

6 1 7

l.P
1 0

i.o
1.0
6.0

i. !
3.6

4.2

5.3
7 /

2.3

2 .5
7.3
3.2

3 Í3
7.1
2.9
9.0

i.O

1 ?

2.8

7 . 2

5.9
5.7
4 . 6
3.8

7.1

2 .6
3. 5

1.0
i.n

i.o
1.0
6.3

4 . 2
4.0
2.9
4 . 1

3.9
? 4

2 . 5
2 . 4
2. ei ^
2.8
2.4
4 . 4

5.5
3.:
7.5
3 .4

10.0

l.n

1 4
6.0
3.0

6.3
6.2
5.3
4 .1

7.9

2.9
3.8

R

l.C
1 0

1.0
1.0
1.0
6.4

4 .4
4.1
2.8

6.0
7. S

2.5
2.4
3.2
2.8
3.0
2. É
4 . 3

5.2
2.9
7 . 5
3.0
8 .4

1.0

1.R
6 . 4
4.4

7 . 4

6.3
6.4
5 .2
4 .6

5.2

2.9
3.8

9

1.0
1 0

1.0
1.0
1.0
4 . B

3.0
3.2
2.3

4 . 2
i.i

2.0
2.0

2.?
2.2
1.9
3.1

4 .6
2 . 5
5.7

l'.b

1.0

' fi
4. G
2.8

6.0

5.2
4. S

3 Í 4

6.0

2 .3
3.1

10

1.0
1.0

1.0
l.C
1.0
3.8

3.1
2 .C
2.1
2.8

3.1
1.7

1.7
1.8
2.1
1.9
2.0
1.3
2.7

3.6
1.9
4 . 5
1.9
5.2

1.0

4 Í 3
2.1

5.5

4 . 7
4 . 5
í.O
3.?

b.6

Z.I

11

1.0

1.0
1.0
1.0
2.6

2.1
1.7
1.4
1.7

1.8
1.1

1.2
1.3
1.4
1.3
1.3
i. :
1.9

2 . 4
1.2
3 . 3
1.5
3.8

i.O

1.7

2.1

3 .7

3.1
2 . 7
2.4
1.9

4.0

1.4
1.7
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7.3 Illustrations

ILLUSTRATION 7F CONCISE PRESENTATION OF SAMPLING ERRORS FOR
DIVERSE SUBCLASSES AND SUBCLASS DIFFERENCES.

This illustration is discussed in some detail as it shows how in a multisubjeci survey with a complex sample
design, the great volume of information on sampling errors for diverse variables, subclasses and subclass
differences can be summarised for presentation. This example also represents a most carefully worked out form of
presentation from a survey in a developing country. The illustration is taken from the 1976 Indonesia Fertility
Survey (Indonesia 1978).

The Indonesian survey covered the six provinces in Java and Bali accounting for around two-thirds of the national
population. Basically, the sample was selected in two stages: selection of around 400 clusters of average size
around 100 households each with systematic PPS; followed by the selection of an average of 25 households per
cluster with inverse PPS. The final sample consisted of just over 9000 ever-married women in the childbearing
ages who were interviewed in detail on fertility and related factors and formed the main units of analysis for the
survey. The sampling rates varied significantly across geographical domains (urban and rural areas, and provinces)
but the sample of women was essentially selfweighiing within each domain.

An idea about the extensive set of sampling error computations is provided by the following figures, which are
not untypical for a national household survey of this type. Errors were computed for 25 substantive variables,
each over the whole sample, 22 demographic and socioeconomic subclasses and 11 differences between pairs of
subclasses; the whole set was repealed over 7 geographical domains, thus involving a total of nearly 6,000
estimators and their sampling errors. The set of compulations could be undertaken without a great difficulty using
the CLUSTERS program described in Chapter 4.

Overall results for the 25 variables over the ful l sample are shown in Table 7F.(1). The variables can be divided
into four substantive groups covering marriage, fertility, fertility preferences and contraception. Such grouping can
be helpful in the search for regular patterns in the variation of sampling errors. The table shows standard errors
and some derived measures including deft. The last column shows the average cluster size. This can be used with
deft (and after removing the effect of sample weights as explained in Section 6.5) to compute rohs. Also it can be
useful to add to the table quantities like relative error (rse = se/r) and coefficient of variation (cv = s/r) for
means.
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Illustration 7F.(1) Overall results (total sample).

Variable

1. Age a: Marriage
2. First Marriage D.ssoKcd
3 Remarried
4 Exposed

5. Children Ever Born
6 Births in Firsi 5 ^ cars
7. First Birih Interval
8. Dirihs in Past 5 Years
9. Closed Birth Interval
10 Open Uirth Interval
1 1 Momhs Breasi-fed
12 Pregnant

13 Wants No More Children
14 Prefers Boy
15 Las: Child Unwanted
16 Additional Number Wauled
17 Desired Famil) Size

IS. Knows Modern Method
19 Ever Ustd Pill
20 Ever Used IUD
21. Used Any Melhod
22. Used Modern Method
23. Using a Folk Melhod
24 Using An) Melhod
25. Coniraccpring and Wanting No

More Children

iNolcs

r

15 3
0 ¿0
0.78
0,62

3 46
1.24
24 1
09S
40 3
43 7
16 8
0 10

0.39
0.35
0.17
1.0?
4 12

0.75
0 2 3
0.07
0.34
0.30
002
0.37
0 53

SE

0-060
0.007
0.011
0007

0.039
0.016
0.250
0019
0^80
1.100
0 150
OOU4

0010
o.oi :
0006
003Í
0.041

0010
0.009
0005
0009
0009
fl.no:
0 0 1 1
0 0 1 5

9SÍ-

r-lSE

15 2
0 39
0.76
0.60

3 39
1 21
23.6
0 94
39.3
41.5
16.4
009

0 37
0 33
0 16
098
4 04

0.73
0.21
006
0.33
0 28
0.01
0 3 5
0 50

CON. I.NT .

r + lSK
13.5
0.42
0.80
0.63

3.5J
1.27
24 6
1.01
41.2
45.9
17 1
n n
0 4 1
0 37
0.18
1.13
4.21

0.77
0.25
0,08
0 36
0 32
0.02
0.39
0 56

n

6341
9136
3253
9136

9136
7428
6869
6975
6660
5193
1933
9136

6744
3339
8218
6002
86SI

9136
9136
9136
9136
9136
5778
5778
2393

,

3.26
0.47
0.42
049

2.73
0.95
14.2
0.94
25.6
50 7
6.20
0.29

0 4 8
04R
0.38
1.67
2.03

0.43
0.44
0 2 5
0.4H
0.47
o.-.i
0.46
049

UEfT

. Î4

.44

.50

.36

.34

.38

.45

.54

.54

.56

.09

.31

.71

.34

.44

.62

.88

.24

.95
9U
79
82

.32
67
48

"b

16.9
24,3

8 7
24.3

24 3
198
18.4
16.2
17.7
13. H
5.1

24.3

17.9
8.9

21.9
160
23.1

24.3
24 3
24.3
24.3
24.3
15 4
15 4
6.4

r = Sample estímale of rdiiu, mean, or proportion.
SE = Sundard error of r. for the clustered sample
95°.» CON INT. = The 95 confidence
n = Unweighted sample size.
s = Standard deviation.

s
DEFT = Design effect = SE/ ^n

b = Average unweighted number

inicrval. r ± 2SE

of individuals per sample PSU
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7.3 Illustrations

A very concise form of presentation of sampling errors for diverse subclasses is possible when standard errors and
défis for each variable for group of variables) of interest can be shown as a function only of subclass size, irrespective
of the nature of the characteristic defining the subclass (see Section 6.6). This is shown in Table 7F.(2) for standard
errors. The table provides a good approximation for cross-classes such as age groups, and also classes which are found
in most clusters but arc not distributed so uniformly. It is importan! to recognise some limitations of such a
presentation. The table does not apply as such to highly segregated or geographical classes. Also for certain variables
highly correlated to characteristics defining a subclass, correction is required to account for differences in population
variances of the variable in different subclasses. This is done in a very approximate manner in the footnotes following
the table. AJso, separate tables like this are required for each geographical domain in principle.

A similar table can be constructed for defts as a function of subclass size. (This is not shown here, hu t see I l lustrat ion
6G). Such a table is in fact easier to construct for dcfts than for standard errors, because the former measure is more
portable.

Table 7F.(3) shows how Table 7F.(2) for subclasses can also be used for subclass differences. This is constructed on
the basis of Equation (6.29) discussed in the previous chapier.

In the present example, the sample data are weighted, because the sample is self-weighting only wiihin but not across
domains. The weighting of sample data has important consequences for the presentation of sampling errors. Firstly,
the modelling of sampling errors has to take into account the loss factors D (D, for the total sample, which usually
exceeds the factors De for individual domains) as explained in Section 6.6.3. Secondly, wi th weighted samples, special
provision is usually required to provide the user with unweighted sample six.es to be used in tables like 7F.(2) and
7F.(3). For selfweighting samples this presents no problem if the good practice of showing relevant sample si/,es in
the tabulations is followed. However, in weighted samples it is generally noi convenient to show both weighted and
unweighted frequencies in the tabulations, and preference is given to showing the former. This is because exact
weighted frequencies are required to permit amalgamation of categories in the tables, while unweighted frequencies
are required only approximately as an indicator of (and to serve as a basis for estimating) sampling error.
Consequently, additional information is required to convert the weighted frequencies shown in survey tabulations to
the actual sample size, even if approximately. This is the purpose of Table 7F.(4).

Another major issue in concise presentation is the need to provide sampling errors for separate geographical domains.
One option is to repeat the above form of presentation for each domain. This may be possible and desirable for major
divisions of the sample, such as into urban and rural sectors. However, for smaller and more numerous domains, more
concise (but necessarily more approximate) procedures may be preferable. This is noi included in the presentation,
but a possible approach was discussed in the context of Illustration 6G.(1) in the last chapter.
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ILLUSTRATION 7F.(2). STANDARD ERRORS AS FUNCTION OF SUBCLASS SIZE.

finable

1 Age a' Marriage1

2 Frsl Vlarnaje Dissolved
1. Remarried
4. Cxpostd

5. Children Ever Born1

ft Birlli1! in Firil 5 years
1 Firsi Binh Interval
B Hirlhs in Pasl 5 >eais
9 Closed Birth Interval'
10 Open Bir[h Interval '
1] Months Breast -Ted
12 Pregnant

11 Wants No Moie Children
14. Prefers llo>
15 Last Chile1 Unwanted1

16. Additional Number Wanted
17 Desired Family Size

18 Knu^s Modern MelhutJ
19. Ever Used Pill
20 Ever Used IUD
2 1 . Used Any Melhod
22 Used Modern Method
2J. Usine Full Melhod
24 Using Any Method
25 Cnniractptm^ and Wanting

No More Children

Noles
'For subclasses »i:h mean O 5

llntvrlphlrd s

30-
V)

0 5 3
.080
065
080

.450
.160
2 35
.165
4 35
e 35
098
CMS

.080

.080
060

.265
135

075
.065
CUO
080
080
.025
OÍD
OÍO

5 1 -
HK)

n 40
060
050
060

340
120

1 SO
125

3.25
3 90
0.78
032

.06C
060
045
.190
260

06ÍI
050
030
.060
0*0
020
U60
060

101- 201-
2(X> 4(X)

0 30 0 22
.045 .030
OJ5 .025
040 030

.240 180

.090 .060
1 30 0 95
.090 .065
2 35 1 7!
4 70 3 50
0 52 0 37
.024 018

.045 .035

.045 032

.035 .025

.I1C .105

.I9S 14-i

IMS 031)
.OJO 030
025 UIS
.04Î .0.15
.!>4_< 035
.ON 010
.04,< OJ5
045 0)5

401- 701-
700

0 17
.025
020

.022

130
050

0 7 2
050
1 35
2.70
o :s
013

026
024
019
OSO
115

025
022
OM
0:5
025
C08
0:5
025

101)0
0 14
.020
017
018

110
.040
060
042
1 10
2.25
0 2 3
.Oil

.022

.020

.016

.070
100

020
,019
012
.022
.022
.006
022
022

1001
1500

0.12
017
0)5
016

.090

.035
050
.035
095
1 90
020
.009

.020

.018

.013
060
.085

.018

.017
009

.020

.020

.005

.020

.020

1501-
2000

0 II
.014
.013
.013

.080

.030
0 44
.031
080
1.65
0 17
.008
.016
.014
.Oil
.050
075

.015

.014

.008

.016
016

.OOJ
016

.016

2001-
1000

0.09
013

.012
012

.070

.025
0 38
.027
0 6 5
1 45
n H
.007

.015

.013

.010

.045
065

.014

.013
007
015
015
003
015
015

3001-
500C

008
O i l
009
010

060
.020
0 3 1
.022
U60
1.20
0 12
.006

.013

.Oil
008
037
055

.012
Oil
007
013
013
.003
013
013

50U1
-¡000

aw
008
008
.008

.050

.017
0 26
.018
0.50
1.05
(1.10
.005

.010

.009

.007

.032

.045

.010

.009
006

.010-

.010

.002
010
.010

>7000

0 06
007

.007
007

040
.015
0 21
.017
0.45
0.92
0 09
004

.009
007
006
028
.040

.009
008
005

.009
Ofl9
002
0"W
009

. multiply shown valuó of St b> 0 5
Tor variables '9' and '10', multiply shown
mean >45 0
'For subclasses wiih prupcinion
'For subclasses with mean <0 3

<0 1. rniilt

value b> 0

piy shütii

7 for subclasses

values of SK b>

'iiîi mean

0 5

<400 and niulnpl> shov-n values bv / J for subclasses uiih

. multiply sho*n value* of SE bv 0 Í



ILLUSTRATION 7F.(3). EFFECTIVE SAMPLE SIZE FOR SUBCLASS DIFFERENCES
AS FUNCTIONS OF SUBCLASS SIZES (n, and nj.

100
200
400
600
1000

n, 1500
2000
2500
3000
4000
5000

100
50
70
80
90
90
90
100
100
100
100
100

200
—
100
130
150
170
ISO
180
190
190
190
190

400
_.
_
200
240
290
320
330
340
350
360
370

600
—
—
—
300
380
430
460
4SO
500
520
540

1000
—
—
—
—
500
600
670
710
750
BOO
830

n, (<n,
1500
—
—
—
—
—
750
860
940
1000
1090
1150

)
2000
—
—
—
—
—
—
1000
1110
1200
1330
1430

2500
—
—
—
—
—
—
—
1250
1350
1540
1670

3000 4000 5000
— —
— — —
_ _ _
_ _ _
_ _ —
_ _ _
_ _ —
_ _ _
1500 — -
1710 2000
1880 2220 2500

ILLUSTRATION 7F.(4). FACTORS BY WHICH WEIGHTED SAMPLE SIZES ARE MULTIPLIED
TO OBTAIN APPROXIMATE UNWEIGHTED SAMPLE SIZES.

(Source: Indonesia Fertility Survey, 1976)

SUBCLASS

ALL

AGE
Under 25
25-34
3M4
45-49

YEARS SINCE MARRIAGE
Under 10
10-19
20-24
25 +

AGE AT MARRIAGE
Under 15
15-19
20 «

LEVEL OF EDUCATION
No schooling
Primary Incomplète
Primary Completed
Junior High +

HUSBAND'S OCCUPATION
Prof., Admin, Clerical
Sales, Services
Manual
Farming

All
Juwa-Hih

1,00

0.95
1.03
1.02
0.96

1.04
1.03
I.UO
0.89

0.78
0.90
1.4]

093
0.95

.14

.73

.45

.11
24

0.83

T)pt i

Urban

2.04

2 06
2.07
2.00
2.00

2.09
2.05
2.U4
1.92

1.99
2.02
2.i:

—
—
—
—

—
—
—

f Place

Hural

0.81

0 77
0.83
0.82
0.79

0.8J
0.83
0.82
0,73

U 70
O S 2
1 14

—
—
—
—

—
—
—

Jam
Barn

0.73

0 70
0.74
0.74
076

0.72
0.7.1
0 71
0.74

069
0 7 1
0.87

0 65
0.73
079
1 16

094
0 79
0 80
0.63

JlUl

Tvn|(iEh

0 7 6

0.74
0.75
0.76
0.80

0.76
0 75
0 lb
0.76

0.71
0.7J
O.E9

0.71
0.73
0,92
1 27

1.06
0.92
0.97
0.65

Province"

>og)Ljru

3.53

3.56
3 5J
3.54
3.46

3.50
3.5-7
J.46
3 52

3.64
3 W>
3.46

3. S3
3.49
3.37
3.20

3.46
3.22
3.2fi
3.68

JDHB
Timur

0.70

0 70
0 70
0.71
0 69

0.71
0.70
0 71
0.68

06Í
0 69
0 Tl

II fti
0 7 1
0 81
1 08

0.87
0 85
0.84
0 62

Hah

4.83

4 Tí

4.8(1
4.79
5.00

4.78
4.82
4 95
4 92

5.17
4.82
4 8Í

4 81
4.88
5 00
4 90

4.93
4.5Ï
4.77
4.89



7 Prescnlalion and Use of Informalion on Sampling Errors

ILLUSTRATION 7G COMPONENTS OF VARIANCE

Toial variance of a siaiisiic may be decomposed into components in various ways such as according to sampling
stages, steps in the estimation procedure, or some other features of the design (see Chapter 5). Informalion on
variance components may not be of interest to the general user or substantive analyst, but it can be most useful for
survey design work. Few surveys provide information on variance components; in pan this is because of the
complexity and d i f f icu l ty involved in decomposing total variance into components. As a rare illustration.
Tables 7G.(1) and (2) show some information from the US Current Population Survey (United Slates, 1968). The
information has been presented concisely for a sel of impor tan t variables: Table 7G.(1) showing components by
sampling stage; and Table 7G.(2) by steps in the estimation procedure. The CPS sampling plan is essentially
equivalent lo dividing the ent i re US populat ion into u l t i m a t e sampling uni ts (clusters) each containing about 4
neighbour ing housing uni ts , and ihen selecting a clustered sample of ihc USUs. Table 7G.(1) shows thai the main
component consists of variance between USUs wi th in PSUs, though for some variables ihe between-PSU componcnl
exceeds lOCr of ihc total. The raiher unusua l and generally small 'between s t ra tum' component refers to variance
among strata loials w i t h i n pairs of 'collapsed' s t ra ta in to which the sample was divided for the purpose of variance
compuiations.

The above analysis of variance applies to the ' f ina l ' eslimatcs from ihc survey. These eslimalcs were ihemselves
produced in a number of est imaiion siages: (i) essentially unbiased estimates wi th adjustment for non-response; (ii)
the first stage ratio est imation to reduce the contr ibut ion to variance arising from the selection of PSUs on the basis
of past census informal ion: ( i i ) the second stage ratio estimation which adjusts survey estimates in a number of
age-sex-race groups to independently derived current estimates; and f ina l ly (iv) the composite estímales computed
as weighted averages of current and previous months estimates. (For details of the procedure, see United Stales,
1%IS). Table 7G.(2) shows the ra t io of the variance of the estimator obtained af ter each stage in the estimation
procedure to the corresponding variance of ihc f ina l composite esiimator. This is ihc factor by which variance is
reduced due to the subsequent stages in the est imation procedure. For instance for the variable 'Not in labor force,
total', the variance of the unbiased est imator produced af ter step (i) is 4.07 times larger than ihc variance finally
obtained for the composite esiimaior for th i s variable. The subsequent three stages reduce the variance by ihis factor.
There is a very slighi reduction due 10 first stage ratio eslimaiion (slep ii), from 4.07 to 4.01; bul a major decrease,
from 4.01 to 1.15 limes Ihe f inal variance a f te r second stage ratio estimation (siep lii).
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ILLUSTRATION 7G.(1). COMPONENTS OF VARIANCE BY SAMPLING STAGE.

Components of Estimated Sampling Variance for CPS Composite Estímales of
U S Level. Monthly Averages 1975

Population 16 years old and over

II)

Not «hit»

Civilian labor forct. tola'

Averag*
asiimate
of levai <
l« lO'l

(21

58655
7 239

92612
Nol while 1 10529
Part lime
Teenagers 1 6- 19 years old

Employed in igncutturt. totêl
Males
Nol while
Teenagers 1 6- 19 vea rs old

Males
Not while
Farm residence
With a job not a t work
Self-employed
Teenagers. 1 6- 19 years old

Unemployed, total
Nol while
Teenagers 1 6-19 years old

In SMSA 'i lote/
Central city

Rural nonlarm residence

Rural firm residence

Household headi

8197
a. 799

3331
2801

28*
453

81.402
4 3 4 2 9

8 787
\ 948
5007
5 6 2 6
6 593

7.830
1, 4 59
1.752

103 355
14.956

3 6 9 1 9

6 520

7 2 4 2 2

Average
standard
error ol

level'
l< 101)

(3)

22801
85 02

22801
8502

1 1 2 68
82 53

10354
8 5 4 3
31 15
31 42

24333
146 17
8 6 2 4
8092

107 41
9 6 8 5
8027

123 75
55 17
5580

44SJ2
367 27

454 62

18544

16580

Distribution of variance1

Within
PSU

(percent)

141

83 7
9 5 0

83 7
950
9 6 4
93 9

970
91 4
7 8 2
87 1

90 3
969
980
8 5 6
97 3
88 7
9 6 2

S3 1
9 5 5
960

938
1028

93 1

106 9

999

Between
PSU

Ipercent)

151

If 7
5 1

'4 7
5 1
2 6
60

97
S 1

2 3 6
12 7

80
1 5
1 B

1 5 4
2 9

1.1 0
3 9

54
5 1
3 9

4 4
-46

49

- 5 8

- 6

Between
stratum
Ipercent)

(6)

/ 6

/ 6
-

1 0
1

33
3 5

-1 8
- 1

/ 7
1 6

1
- 1 1
- 2

3
- l

1 5
- 5

2

1 7
1 8

20

-1 2

8

- Entry rlprfMnn uro
1 Th« inrhmtbe rfiaart of iriw 1 ] monthly • Kirfli (id kvtll lor in« vif

«•"«ing IS.t p M 1
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ILLUSTRATION 7G.(2). THE EFFECT OF ESTIMATION PROCEDURES ON VARIANCE.

Variance of Composite Estímales of Monthly U.S. Level and Variance Factors for
Selected Estimators, Monthly Averages: 1975

Population 16 years old and over

ID

Not-white

Cm/ia/i labor torée total
Not-white
Parí time . . . . . .
Teenagers 16-19 years old

Males . . . . .
Not-whiie..
Teenagers. 16-19 years old

Employed in nonegrtcufture. roía/ . .
Males . . . . .
Nouwhua
Farm residence
With a job not at work
Self-employed .
Teenageri, 16-19 yean old . .

Unemployed, total
Nol-whue
Teenagers 16- 19 v**ri old

InSMSA'l. lora/ . .
Central city .

Rural nonlarm residence

Rural farm residence

Household heads

Variance ol
composite
estimate
ol levir
(« 10')

121

5! sai
7 228

51 991
7.228

12696
6 H I 1

tO 720
7 299

970
987

59237
21 365

7 4 3 7
6 547

11 537
9380
6 444

15313
3044
3 114

199206
134885

206 862

3 4 3 8 9

27 490

Variance laclar'

Unbiased
estimator

13)

4 0698
4 9031

S 3244
8 3 1 7 3
1 2010
32240

1 4785
1 5001
1 1583
1 1842

sosas
6 7699
56909
1 2052

8752
1 2662
23790

/ 1609
12898
i 1254

26815
1 5732

20887

1 8 2 2 7

66847

Unbiased estimate with

First
liage

141

40132
40965

S 24 73
7 3 1 3 7
1 2017
3 2 1 2 8

1 0603
\ 0460
1 0150
1 0792

60057
86832
5 1624
1.1749

8710
1 2622
2 3 7 1 5

I J57S
T2074
1 1202

26155
1 3271

1 6124

1 2250

65833

Second

151

1 1543
1 1022

/ /543
1 1022
1 0859
1 0359

; 5300
1 5649
1 2478
1 1633

/ 2 /5 /
1 2189
1 2178
1 2660

8496
1 1835
1 0841

1 0101
9965
9669

/ 1350
1 4023

1 5997

1 8465

1 2884

Finland

(6)

1-1046
\ 0979

/ 1406
1 0979
1 0632
1 0306

1 1076
1 1060
1 1424
1 0670

/ 1666
1.1569
1 1762
1 2306

8473
1 1844
1 0699

1 0007
9758
9582

1.1318
1 2 )37

1 1358

1 2361

1 2706

1 Tr-« Bfilluntlic main of ir*« 12 «aniñen ol monlNy Uvtl for ih« )Mf
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