last update: July 2010

ENVIRONMENTAL INDICATORS

Natural disasters:

Climatological Disasters

     
     
 
 
No. of events
Fatalities
Persons Affected
 
1980-89
1990-99
2000-09
1980-89
1990-99
2000-09
1980-89
1990-99
2000-09
   
Afghanistan
0
3
6
0
224
385
0
200
4 960 000
Albania
2
0
3
68
0
3
3 205 745
0
150
Algeria
1
1
3
0
22
60
0
0
0
Angola
3
1
2
0
0
58
2 480 000
105 000
25 000
Antigua and Barbuda
1
0
0
0
0
0
75 000
0
0
Argentina
1
3
9
0
24
51
152 000
25 000
3 500
Armenia
0
0
1
0
0
0
0
0
297 000
Australia
5
12
13
86
30
553
80 000
11 647 000
16 754
Austria
0
0
4
0
0
352
0
0
0
Azerbaijan
0
0
1
0
0
0
0
0
0
Bangladesh
4
8
10
170
801
1 241
25 000 000
34 000
261 000
Belarus
0
0
2
0
0
5
0
0
0
Belgium
1
0
5
0
0
2 118
0
0
0
Belize
0
1
0
0
0
0
0
0
0
Benin
2
0
0
0
0
0
2 100 000
0
0
Bhutan
0
1
0
0
0
0
0
0
0
Bolivia
3
3
8
0
3
15
3 083 049
336 660
130 777
Bosnia and Herzegovina
0
0
5
0
0
1
0
0
72 575
Botswana
1
1
1
0
0
0
1 037 300
100 000
0
Brazil
5
6
7
97
1
7
20 750 000
10 012 000
2 000 000
Brunei Darussalam
0
1
0
0
0
0
0
0
0
Bulgaria
1
1
10
0
3
47
0
300
0
Burkina Faso
2
3
1
0
0
0
1 450 000
2 696 290
0
Burundi
0
1
4
0
6
122
0
650 000
2 412 500
Cambodia
1
1
3
0
0
0
0
5 000 000
1 550 000
Cameroon
0
1
2
0
0
0
0
186 900
0
Canada
8
8
5
1
0
1
62 200
20 600
1 800
Cape Verde
1
2
1
0
0
0
0
10 000
30 000
Central African Republic
1
1
1
0
0
1
0
85
0
Chad
1
2
2
0
0
0
0
656 000
2 800 000
Chile
0
6
6
0
12
6
0
10 300
25 000
China
6
14
22
1 593
2 196
325
49 086 092
133 852 180
309 524 000
China, Hong Kong SAR
14
0
0
10
0
0
0
0
0
Colombia
0
2
1
0
0
0
0
100 000
0
Comoros
1
0
0
0
0
0
0
0
0
Congo
1
0
0
0
0
0
0
0
0
Costa Rica
0
3
0
0
0
0
0
1 200
0
Cote d'Ivoire
1
0
0
0
0
0
0
0
0
Croatia
0
1
8
0
0
846
0
0
0
Cuba
3
3
2
0
0
0
0
820 000
0
Cyprus
0
2
4
0
52
9
0
0
0
Czech Republic
0
0
2
0
0
433
0
0
0
Dem. Rep. of the Congo
1
0
1
0
0
0
300 000
0
0
Denmark
0
1
0
0
0
0
0
0
0
Djibouti
3
1
4
0
0
0
255 000
100 000
632 750
Dominican Republic
1
0
1
0
0
0
0
0
0
Ecuador
1
2
1
0
0
0
800
34 000
107 500
Egypt
0
2
1
0
54
3
0
0
0
El Salvador
1
2
3
0
0
1
0
0
400 000
Eritrea
0
2
1
0
0
0
0
3 900 000
1 700 000
Estonia
0
0
1
0
0
3
0
0
0
Ethiopia
3
3
4
300 367
0
0
21 250 000
5 886 200
21 600 000
Fiji
1
1
0
0
0
0
31 000
263 455
0
France
9
8
10
25
48
20 900
2 000
11 250
3 000
Gambia
1
0
1
0
0
0
500 000
0
0
Georgia
0
0
1
0
0
0
0
0
696 000
Germany
0
1
6
0
30
9 383
0
0
0
Ghana
2
0
0
4
0
0
12 501 500
0
0
Greece
8
4
8
1 091
19
122
200
2 000
2 308
Guatemala
2
1
5
0
0
47
73 000
0
2 615 446
Guinea
1
1
1
0
12
0
0
0
0
Guinea-Bissau
1
1
2
0
3
0
0
1 200
132 000
Guyana
1
1
0
0
0
0
0
607 200
0
Haiti
1
2
1
0
0
0
103 000
1 000 000
35 000
Honduras
0
2
6
0
0
0
0
0
665 625
Hungary
1
1
5
0
0
646
0
0
0
India
15
11
19
2 424
4 045
4 946
400 000 000
1 175 000
350 000 000
Indonesia
4
6
5
594
972
0
3 000
4 099 000
15 000
Iran (Islamic Republic of)
0
1
1
0
0
0
0
37 000 000
0
Iraq
0
1
0
0
0
0
0
0
0
Israel
1
3
1
0
0
0
0
200
0
Italy
1
6
7
7
11
20 117
0
300
0
Jamaica
1
0
1
0
0
0
0
0
0
Japan
0
0
3
0
0
72
0
0
222
Jordan
0
2
2
0
15
0
0
180 000
150 000
Kazakhstan
0
2
1
0
0
3
0
608 000
0
Kenya
1
4
3
0
85
111
600 000
28 500 000
9 600 000
Kiribati
0
1
0
0
0
0
0
84 000
0
Korea, Republic of
0
1
4
0
40
2
0
0
3 800
Kyrgyzstan
0
0
1
0
0
11
0
0
0
Lao People's Dem. Rep.
2
2
0
0
0
0
730 000
20 000
0
Latvia
0
0
3
0
0
76
0
0
0
Lebanon
0
0
1
0
0
1
0
0
0
Lesotho
1
1
2
0
0
0
500 000
331 500
975 000
Liberia
1
1
0
0
0
0
0
1 000 000
0
Lithuania
0
2
2
0
32
20
0
0
0
Luxembourg
0
0
1
0
0
170
0
0
0
Madagascar
2
0
3
200
0
0
1 950 000
0
845 290
Malawi
1
2
3
0
0
500
1 429 267
9 800 000
8 449 435
Malaysia
0
4
1
0
0
0
0
5 000
0
Mali
1
1
3
0
0
0
1 500 000
302 000
1 025 000
Mauritania
1
2
1
0
0
0
1 600 000
467 907
1 000 000
Mauritius
0
1
0
0
0
0
0
0
0
Mexico
3
12
6
23
966
156
0
65 000
0
Micronesia, Federated States of
0
1
0
0
0
0
0
28 800
0
Mongolia
1
2
2
0
25
5
0
5 000
957 700
Morocco
2
1
1
0
0
0
0
275 000
0
Mozambique
2
2
7
100 050
0
67
4 758 000
3 300 000
3 239 500
Myanmar
1
0
0
8
0
0
28 588
0
0
Namibia
1
3
2
0
0
0
0
438 200
345 000
Nepal
1
2
4
0
88
126
0
0
200 000
Netherlands
0
0
4
0
0
1 965
0
0
0
New Zealand
1
1
1
0
0
0
130
0
0
Nicaragua
0
4
3
0
0
0
0
365 000
204 000
Niger
2
2
2
0
0
0
4 500 000
1 638 500
6 584 558
Nigeria
1
1
1
0
18
60
3 000 000
0
0
Pakistan
0
6
7
0
827
527
0
2 200 250
0
Panama
1
0
1
0
0
0
81 000
0
1 436
Papua New Guinea
1
2
0
0
60
0
40 000
508 000
0
Paraguay
1
1
6
0
12
20
0
40 000
395 990
Peru
2
4
7
17
25
770
2 700
3 301 000
3 083 427
Philippines
3
3
2
0
10
0
3 695 260
2 854 582
0
Poland
1
4
6
0
303
1 022
0
0
0
Portugal
4
2
8
29
0
2 768
0
0
150 000
Puerto Rico
0
1
0
0
0
0
0
0
0
Republic of Moldova
0
0
3
0
0
15
0
0
210 394
Romania
1
5
12
0
96
282
0
1 700
0
Russian Federation
0
17
21
0
631
1 365
0
825 200
1 031 000
Rwanda
2
2
1
237
0
0
480 000
976 545
1 000 000
Samoa
1
0
0
0
0
0
1 000
0
0
Sao Tome and Principe
1
0
0
0
0
0
93 000
0
0
Senegal
1
0
1
0
0
0
1 200 000
0
284 000
Serbia
0
0
2
0
0
0
0
0
0
Slovakia
0
0
4
0
0
7
0
0
0
Slovenia
0
0
1
0
0
289
0
0
0
Solomon Islands
0
2
0
0
0
0
0
380
0
Somalia
4
0
4
600
0
23
553 500
0
4 700 000
South Africa
4
6
8
0
64
116
2 170 000
300 000
15 001 000
Spain
6
8
10
57
50
15 175
300
6 017 100
1 200
Sri Lanka
5
0
1
0
0
0
5 006 000
0
1 000 000
Sudan
3
4
2
150 000
47
0
11 850 000
9 360 000
6 300 000
Swaziland
2
1
3
500
0
2
0
250 000
1 381 500
Sweden
0
0
1
0
0
0
0
0
0
Switzerland
0
0
3
0
0
1 039
0
0
0
Syrian Arab Republic
0
1
1
0
0
0
0
329 000
1 300 000
Tajikistan
0
0
3
0
0
0
0
0
5 800 000
Thailand
0
3
4
0
0
0
0
8 500 000
15 000 000
The Former Yugoslav Rep. of Macedonia
0
1
5
0
0
31
0
10 000
1 000 202
Timor-Leste
0
0
1
0
0
0
0
0
0
Togo
2
0
0
0
0
0
400 000
0
0
Tunisia
1
0
0
0
0
0
0
0
0
Turkey
2
2
8
43
0
72
0
8 500
0
Uganda
1
2
3
0
115
79
600 000
826 000
2 005 000
Ukraine
0
0
4
0
0
833
0
0
50 000
United Kingdom
0
2
4
0
14
305
0
0
0
United Rep. of Tanzania
2
3
2
0
0
0
2 010 000
3 800 000
2 154 000
United States
6
29
48
1 660
1 204
442
0
44 682
786 229
Uruguay
0
1
3
0
0
7
0
0
2 400
Uzbekistan
0
0
1
0
0
0
0
0
600 000
Venezuela (Bolivarian Republic of)
0
0
1
0
0
0
0
0
0
Viet Nam
1
2
3
0
0
0
0
4 400 000
1 710 000
Zambia
2
2
1
0
0
0
0
2 973 204
1 200 000
Zimbabwe
1
2
2
0
0
0
700 000
5 055 000
8 100 000
                   
Sources:                  
EM-DAT: The OFDA/CRED International Disaster Database – www.emdat.be– Université catholique de Louvain – Brussels – Belgium.
                   
Definitions & Technical notes:
Climatological disasters are defined as events caused by long-lived/meso to macro scale processes in the spectrum from intra-seasonal to multi-decadal climate variability. Such events are further classified as: Extreme Temperature; Drought; Wildfire. Extreme Temperature events are heat waves, cold waves and extreme winter conditions (snow pressure, icing, freezing rain, avalanche). Wildfire is forest fires and land fires (grass, scrub, bush, etc.).
Only disasters that fulfil at least one of the below criteria are included in EM-DAT:
- 10 or more people reported killed
- 100 or more people reported affected
- Declaration of a state of emergency
- Call for international assistance
Fatalities are the number of Killed according to the EM-DAT definitions. Killed is defined as persons confirmed as dead and persons missing and presumed dead (official figures when available).
Persons affected are the number of Total affected according to the EM-DAT definitions. Total affected is the sum of injured, homeless, and affected. Injured is defined as people suffering from physical injuries, trauma or an illness requiring medical treatment as a direct result of a disaster. Homeless is defined as people needing immediate assistance for shelter. Affected is defined as people requiring immediate assistance during a period of emergency; it can also include displaced or evacuated people.
A “0” in EM-DAT does not represent a value and can mean either there were no reported events or no information is available.
 
Data Quality:
The EM-DAT database is compiled from various sources, including UN agencies, non-governmental organizations, insurance companies, research institutes and press agencies. Priority is given to data from UN agencies, governments and the International Federation of Red Cross and Red Crescent Societies. The entries are constantly reviewed for redundancy, inconsistencies and incompleteness. CRED consolidates and updates data on a daily basis. A further check is made at monthly intervals. Revisions are made annually at the end of each calendar year.
For more information see: http://www.emdat.be.
 
 
United Nations Statistics Division - Environment Statistics