|
|
No. of events |
Fatalities |
Persons Affected |
|
1980-89 |
1990-99 |
2000-09 |
1980-89 |
1990-99 |
2000-09 |
1980-89 |
1990-99 |
2000-09 |
|
|
|
|
Afghanistan |
0 |
3 |
6 |
0 |
224 |
385 |
0 |
200 |
4 960 000 |
Albania |
2 |
0 |
3 |
68 |
0 |
3 |
3 205 745 |
0 |
150 |
Algeria |
1 |
1 |
3 |
0 |
22 |
60 |
0 |
0 |
0 |
Angola |
3 |
1 |
2 |
0 |
0 |
58 |
2 480 000 |
105 000 |
25 000 |
Antigua and Barbuda |
1 |
0 |
0 |
0 |
0 |
0 |
75 000 |
0 |
0 |
Argentina |
1 |
3 |
9 |
0 |
24 |
51 |
152 000 |
25 000 |
3 500 |
Armenia |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
297 000 |
Australia |
5 |
12 |
13 |
86 |
30 |
553 |
80 000 |
11 647 000 |
16 754 |
Austria |
0 |
0 |
4 |
0 |
0 |
352 |
0 |
0 |
0 |
Azerbaijan |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Bangladesh |
4 |
8 |
10 |
170 |
801 |
1 241 |
25 000 000 |
34 000 |
261 000 |
Belarus |
0 |
0 |
2 |
0 |
0 |
5 |
0 |
0 |
0 |
Belgium |
1 |
0 |
5 |
0 |
0 |
2 118 |
0 |
0 |
0 |
Belize |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Benin |
2 |
0 |
0 |
0 |
0 |
0 |
2 100 000 |
0 |
0 |
Bhutan |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Bolivia |
3 |
3 |
8 |
0 |
3 |
15 |
3 083 049 |
336 660 |
130 777 |
Bosnia and Herzegovina |
0 |
0 |
5 |
0 |
0 |
1 |
0 |
0 |
72 575 |
Botswana |
1 |
1 |
1 |
0 |
0 |
0 |
1 037 300 |
100 000 |
0 |
Brazil |
5 |
6 |
7 |
97 |
1 |
7 |
20 750 000 |
10 012 000 |
2 000 000 |
Brunei Darussalam |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Bulgaria |
1 |
1 |
10 |
0 |
3 |
47 |
0 |
300 |
0 |
Burkina Faso |
2 |
3 |
1 |
0 |
0 |
0 |
1 450 000 |
2 696 290 |
0 |
Burundi |
0 |
1 |
4 |
0 |
6 |
122 |
0 |
650 000 |
2 412 500 |
Cambodia |
1 |
1 |
3 |
0 |
0 |
0 |
0 |
5 000 000 |
1 550 000 |
Cameroon |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
186 900 |
0 |
Canada |
8 |
8 |
5 |
1 |
0 |
1 |
62 200 |
20 600 |
1 800 |
Cape Verde |
1 |
2 |
1 |
0 |
0 |
0 |
0 |
10 000 |
30 000 |
Central African Republic |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
85 |
0 |
Chad |
1 |
2 |
2 |
0 |
0 |
0 |
0 |
656 000 |
2 800 000 |
Chile |
0 |
6 |
6 |
0 |
12 |
6 |
0 |
10 300 |
25 000 |
China |
6 |
14 |
22 |
1 593 |
2 196 |
325 |
49 086 092 |
133 852 180 |
309 524 000 |
China, Hong Kong SAR |
14 |
0 |
0 |
10 |
0 |
0 |
0 |
0 |
0 |
Colombia |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
100 000 |
0 |
Comoros |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Congo |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Costa Rica |
0 |
3 |
0 |
0 |
0 |
0 |
0 |
1 200 |
0 |
Cote d'Ivoire |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Croatia |
0 |
1 |
8 |
0 |
0 |
846 |
0 |
0 |
0 |
Cuba |
3 |
3 |
2 |
0 |
0 |
0 |
0 |
820 000 |
0 |
Cyprus |
0 |
2 |
4 |
0 |
52 |
9 |
0 |
0 |
0 |
Czech Republic |
0 |
0 |
2 |
0 |
0 |
433 |
0 |
0 |
0 |
Dem. Rep. of the Congo |
1 |
0 |
1 |
0 |
0 |
0 |
300 000 |
0 |
0 |
Denmark |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Djibouti |
3 |
1 |
4 |
0 |
0 |
0 |
255 000 |
100 000 |
632 750 |
Dominican Republic |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Ecuador |
1 |
2 |
1 |
0 |
0 |
0 |
800 |
34 000 |
107 500 |
Egypt |
0 |
2 |
1 |
0 |
54 |
3 |
0 |
0 |
0 |
El Salvador |
1 |
2 |
3 |
0 |
0 |
1 |
0 |
0 |
400 000 |
Eritrea |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
3 900 000 |
1 700 000 |
Estonia |
0 |
0 |
1 |
0 |
0 |
3 |
0 |
0 |
0 |
Ethiopia |
3 |
3 |
4 |
300 367 |
0 |
0 |
21 250 000 |
5 886 200 |
21 600 000 |
Fiji |
1 |
1 |
0 |
0 |
0 |
0 |
31 000 |
263 455 |
0 |
France |
9 |
8 |
10 |
25 |
48 |
20 900 |
2 000 |
11 250 |
3 000 |
Gambia |
1 |
0 |
1 |
0 |
0 |
0 |
500 000 |
0 |
0 |
Georgia |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
696 000 |
Germany |
0 |
1 |
6 |
0 |
30 |
9 383 |
0 |
0 |
0 |
Ghana |
2 |
0 |
0 |
4 |
0 |
0 |
12 501 500 |
0 |
0 |
Greece |
8 |
4 |
8 |
1 091 |
19 |
122 |
200 |
2 000 |
2 308 |
Guatemala |
2 |
1 |
5 |
0 |
0 |
47 |
73 000 |
0 |
2 615 446 |
Guinea |
1 |
1 |
1 |
0 |
12 |
0 |
0 |
0 |
0 |
Guinea-Bissau |
1 |
1 |
2 |
0 |
3 |
0 |
0 |
1 200 |
132 000 |
Guyana |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
607 200 |
0 |
Haiti |
1 |
2 |
1 |
0 |
0 |
0 |
103 000 |
1 000 000 |
35 000 |
Honduras |
0 |
2 |
6 |
0 |
0 |
0 |
0 |
0 |
665 625 |
Hungary |
1 |
1 |
5 |
0 |
0 |
646 |
0 |
0 |
0 |
India |
15 |
11 |
19 |
2 424 |
4 045 |
4 946 |
400 000 000 |
1 175 000 |
350 000 000 |
Indonesia |
4 |
6 |
5 |
594 |
972 |
0 |
3 000 |
4 099 000 |
15 000 |
Iran (Islamic Republic of) |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
37 000 000 |
0 |
Iraq |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Israel |
1 |
3 |
1 |
0 |
0 |
0 |
0 |
200 |
0 |
Italy |
1 |
6 |
7 |
7 |
11 |
20 117 |
0 |
300 |
0 |
Jamaica |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Japan |
0 |
0 |
3 |
0 |
0 |
72 |
0 |
0 |
222 |
Jordan |
0 |
2 |
2 |
0 |
15 |
0 |
0 |
180 000 |
150 000 |
Kazakhstan |
0 |
2 |
1 |
0 |
0 |
3 |
0 |
608 000 |
0 |
Kenya |
1 |
4 |
3 |
0 |
85 |
111 |
600 000 |
28 500 000 |
9 600 000 |
Kiribati |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
84 000 |
0 |
Korea, Republic of |
0 |
1 |
4 |
0 |
40 |
2 |
0 |
0 |
3 800 |
Kyrgyzstan |
0 |
0 |
1 |
0 |
0 |
11 |
0 |
0 |
0 |
Lao People's Dem. Rep. |
2 |
2 |
0 |
0 |
0 |
0 |
730 000 |
20 000 |
0 |
Latvia |
0 |
0 |
3 |
0 |
0 |
76 |
0 |
0 |
0 |
Lebanon |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
Lesotho |
1 |
1 |
2 |
0 |
0 |
0 |
500 000 |
331 500 |
975 000 |
Liberia |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 000 000 |
0 |
Lithuania |
0 |
2 |
2 |
0 |
32 |
20 |
0 |
0 |
0 |
Luxembourg |
0 |
0 |
1 |
0 |
0 |
170 |
0 |
0 |
0 |
Madagascar |
2 |
0 |
3 |
200 |
0 |
0 |
1 950 000 |
0 |
845 290 |
Malawi |
1 |
2 |
3 |
0 |
0 |
500 |
1 429 267 |
9 800 000 |
8 449 435 |
Malaysia |
0 |
4 |
1 |
0 |
0 |
0 |
0 |
5 000 |
0 |
Mali |
1 |
1 |
3 |
0 |
0 |
0 |
1 500 000 |
302 000 |
1 025 000 |
Mauritania |
1 |
2 |
1 |
0 |
0 |
0 |
1 600 000 |
467 907 |
1 000 000 |
Mauritius |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Mexico |
3 |
12 |
6 |
23 |
966 |
156 |
0 |
65 000 |
0 |
Micronesia, Federated States of |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
28 800 |
0 |
Mongolia |
1 |
2 |
2 |
0 |
25 |
5 |
0 |
5 000 |
957 700 |
Morocco |
2 |
1 |
1 |
0 |
0 |
0 |
0 |
275 000 |
0 |
Mozambique |
2 |
2 |
7 |
100 050 |
0 |
67 |
4 758 000 |
3 300 000 |
3 239 500 |
Myanmar |
1 |
0 |
0 |
8 |
0 |
0 |
28 588 |
0 |
0 |
Namibia |
1 |
3 |
2 |
0 |
0 |
0 |
0 |
438 200 |
345 000 |
Nepal |
1 |
2 |
4 |
0 |
88 |
126 |
0 |
0 |
200 000 |
Netherlands |
0 |
0 |
4 |
0 |
0 |
1 965 |
0 |
0 |
0 |
New Zealand |
1 |
1 |
1 |
0 |
0 |
0 |
130 |
0 |
0 |
Nicaragua |
0 |
4 |
3 |
0 |
0 |
0 |
0 |
365 000 |
204 000 |
Niger |
2 |
2 |
2 |
0 |
0 |
0 |
4 500 000 |
1 638 500 |
6 584 558 |
Nigeria |
1 |
1 |
1 |
0 |
18 |
60 |
3 000 000 |
0 |
0 |
Pakistan |
0 |
6 |
7 |
0 |
827 |
527 |
0 |
2 200 250 |
0 |
Panama |
1 |
0 |
1 |
0 |
0 |
0 |
81 000 |
0 |
1 436 |
Papua New Guinea |
1 |
2 |
0 |
0 |
60 |
0 |
40 000 |
508 000 |
0 |
Paraguay |
1 |
1 |
6 |
0 |
12 |
20 |
0 |
40 000 |
395 990 |
Peru |
2 |
4 |
7 |
17 |
25 |
770 |
2 700 |
3 301 000 |
3 083 427 |
Philippines |
3 |
3 |
2 |
0 |
10 |
0 |
3 695 260 |
2 854 582 |
0 |
Poland |
1 |
4 |
6 |
0 |
303 |
1 022 |
0 |
0 |
0 |
Portugal |
4 |
2 |
8 |
29 |
0 |
2 768 |
0 |
0 |
150 000 |
Puerto Rico |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Republic of Moldova |
0 |
0 |
3 |
0 |
0 |
15 |
0 |
0 |
210 394 |
Romania |
1 |
5 |
12 |
0 |
96 |
282 |
0 |
1 700 |
0 |
Russian Federation |
0 |
17 |
21 |
0 |
631 |
1 365 |
0 |
825 200 |
1 031 000 |
Rwanda |
2 |
2 |
1 |
237 |
0 |
0 |
480 000 |
976 545 |
1 000 000 |
Samoa |
1 |
0 |
0 |
0 |
0 |
0 |
1 000 |
0 |
0 |
Sao Tome and Principe |
1 |
0 |
0 |
0 |
0 |
0 |
93 000 |
0 |
0 |
Senegal |
1 |
0 |
1 |
0 |
0 |
0 |
1 200 000 |
0 |
284 000 |
Serbia |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
Slovakia |
0 |
0 |
4 |
0 |
0 |
7 |
0 |
0 |
0 |
Slovenia |
0 |
0 |
1 |
0 |
0 |
289 |
0 |
0 |
0 |
Solomon Islands |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
380 |
0 |
Somalia |
4 |
0 |
4 |
600 |
0 |
23 |
553 500 |
0 |
4 700 000 |
South Africa |
4 |
6 |
8 |
0 |
64 |
116 |
2 170 000 |
300 000 |
15 001 000 |
Spain |
6 |
8 |
10 |
57 |
50 |
15 175 |
300 |
6 017 100 |
1 200 |
Sri Lanka |
5 |
0 |
1 |
0 |
0 |
0 |
5 006 000 |
0 |
1 000 000 |
Sudan |
3 |
4 |
2 |
150 000 |
47 |
0 |
11 850 000 |
9 360 000 |
6 300 000 |
Swaziland |
2 |
1 |
3 |
500 |
0 |
2 |
0 |
250 000 |
1 381 500 |
Sweden |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Switzerland |
0 |
0 |
3 |
0 |
0 |
1 039 |
0 |
0 |
0 |
Syrian Arab Republic |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
329 000 |
1 300 000 |
Tajikistan |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
0 |
5 800 000 |
Thailand |
0 |
3 |
4 |
0 |
0 |
0 |
0 |
8 500 000 |
15 000 000 |
The Former Yugoslav Rep. of Macedonia |
0 |
1 |
5 |
0 |
0 |
31 |
0 |
10 000 |
1 000 202 |
Timor-Leste |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Togo |
2 |
0 |
0 |
0 |
0 |
0 |
400 000 |
0 |
0 |
Tunisia |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Turkey |
2 |
2 |
8 |
43 |
0 |
72 |
0 |
8 500 |
0 |
Uganda |
1 |
2 |
3 |
0 |
115 |
79 |
600 000 |
826 000 |
2 005 000 |
Ukraine |
0 |
0 |
4 |
0 |
0 |
833 |
0 |
0 |
50 000 |
United Kingdom |
0 |
2 |
4 |
0 |
14 |
305 |
0 |
0 |
0 |
United Rep. of Tanzania |
2 |
3 |
2 |
0 |
0 |
0 |
2 010 000 |
3 800 000 |
2 154 000 |
United States |
6 |
29 |
48 |
1 660 |
1 204 |
442 |
0 |
44 682 |
786 229 |
Uruguay |
0 |
1 |
3 |
0 |
0 |
7 |
0 |
0 |
2 400 |
Uzbekistan |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
600 000 |
Venezuela (Bolivarian Republic of) |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Viet Nam |
1 |
2 |
3 |
0 |
0 |
0 |
0 |
4 400 000 |
1 710 000 |
Zambia |
2 |
2 |
1 |
0 |
0 |
0 |
0 |
2 973 204 |
1 200 000 |
Zimbabwe |
1 |
2 |
2 |
0 |
0 |
0 |
700 000 |
5 055 000 |
8 100 000 |
|
|
|
|
|
|
|
|
|
|
Sources: |
|
|
|
|
|
|
|
|
|
EM-DAT: The OFDA/CRED International Disaster Database – www.emdat.be– Université catholique de Louvain – Brussels – Belgium. |
|
|
|
|
|
|
|
|
|
|
Definitions & Technical notes: |
Climatological disasters are defined as events caused by long-lived/meso to macro scale processes in the spectrum from intra-seasonal to multi-decadal climate variability. Such events are further classified as: Extreme Temperature; Drought; Wildfire. Extreme Temperature events are heat waves, cold waves and extreme winter conditions (snow pressure, icing, freezing rain, avalanche). Wildfire is forest fires and land fires (grass, scrub, bush, etc.). |
Only disasters that fulfil at least one of the below criteria are included in EM-DAT:
- 10 or more people reported killed
- 100 or more people reported affected
- Declaration of a state of emergency
- Call for international assistance |
Fatalities are the number of Killed according to the EM-DAT definitions. Killed is defined as persons confirmed as dead and persons missing and presumed dead (official figures when available). |
Persons affected are the number of Total affected according to the EM-DAT definitions. Total affected is the sum of injured, homeless, and affected. Injured is defined as people suffering from physical injuries, trauma or an illness requiring medical treatment as a direct result of a disaster. Homeless is defined as people needing immediate assistance for shelter. Affected is defined as people requiring immediate assistance during a period of emergency; it can also include displaced or evacuated people. |
A “0” in EM-DAT does not represent a value and can mean either there were no reported events or no information is available. |
|
Data Quality: |
The EM-DAT database is compiled from various sources, including UN agencies, non-governmental organizations, insurance companies, research institutes and press agencies. Priority is given to data from UN agencies, governments and the International Federation of Red Cross and Red Crescent Societies. The entries are constantly reviewed for redundancy, inconsistencies and incompleteness. CRED consolidates and updates data on a daily basis. A further check is made at monthly intervals. Revisions are made annually at the end of each calendar year. |
For more information see: http://www.emdat.be. |